

THE AUTISM COMMUNITY THERAPISTS

Home-Based ABA Services: Maintaining High Standards and Best Practices in Function-Based Treatment

Chair

Discussant

Brandon Herscovitch

Sandy Jin

Presenters

Stephanie Phelan, ABACS & Simmons College Ashley Williams, ABACS & Simmons College Kimberly Diggs, TACT Kara LaCroix, TACT

ABA CONSULTATION & SERVICES

Conducting Functional Analyses in Home-Based Settings: Preliminary Data on Resources Needed

Stephanie Phelan

ABACS & Simmons College

Ashley Williams

ABACS & Simmons College

Meghan Clausen

ABACS & Simmons College

Brandon Herscovitch

ABACS

Introduction

- Functional analysis (FA) is a powerful tool to assess challenging behavior
 - Systematic manipulation of antecedent and consequent variables
 - Experimentally determine function
 - Lead to effective, function-based treatments
- Meta-analysis Data
 - > 94% differentiated outcomes (Beavers, Iwata, & Lerman, 2013)

(Hagopian, Rooker, Jessel, & DeLeon, 2013; Hanley, Iwata, & McCord, 2003; Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994; Vollmer & Northup, 1996)

Introduction

- FAs have been modified from standard FA
 - Modifications increase efficiency in conducting FAs
 - When initial FAs are undifferentiated, modifications may result in differentiated outcomes

(Beavers, Iwata, & Lerman, 2013; Hagopian, Rooker, Jessel, & DeLeon, 2013; Hanley, Iwata, & McCord, 2003; Hanley, 2012, Iwata & Dozier, 2008)

Design Modifications	Description	References
Brief FA	Definition is inconsistent in the literature Same number of conditions as standard FA but fewer sessions per condition (Hanley, Iwata, & McCord, 2003)	(Cihak, Alberto, & Frederick, 2007; Gardner, Spencer Boelter, Dubard, & Jannett, 2012; Lydon, Healy, O'Reilly, & Lang, 2012; Northup et al., 1991; Tincani, Castrogiavanni, & Axelrod, 1999; Wallace & Iwata, 1999)
Modified Standard FA	 Duration of analysis is reduced Shortened sessions (5-10 min) Reduced number of sessions Fewer conditions 	Only for the purposes of this presentation
Trial-Based FA	The discriminative stimulus (SD) or establishing operation (EO) is presented one trial at a time. Measures percentage of trials with challenging behavior	(Bloom, Lambert, Dayton, & Samaha, 2013)
Precursor FA	The target behavior itself is not assessed. Precursor behaviors (behaviors that reliably precede the target behavior) are assessed.	(Fritz, Iwata, Hammond, & Bloom, 2013; Herscovitch, Roscoe, Libby, Bourret, & Ahearn, 2009; Najdowski, Wallace, Ellsworth, & MacAleese, 2008, Smith & Churchill, 2002)

Design Modifications	Description	References
Synthesized FA	Alternates between test and control conditions	(Hanley, Jin, Vanselow, & Hanratty 2014)
	More than one function is targeted in the test condition	
Single-Function FA	Alternates between one test and one control conditions	(Iwata & Dozier, 2008)
	Only one function is targeted in the test condition	
Latency FA	Latency to the first instance of the target behavior is measured	(Thomason-Sassi, Iwata, Neidert, & Roscoe, 2011)
	Session is terminated following the first response	

Introduction

- Modifications:
 - Are supported in the literature
 - Maintain high experimental standards
 - Increase ease of conducting FAs in homes
- Few published studies on FAs in home-based settings

(Hanley, Iwata, & McCord, 2003)

Purpose

- Describe how our agency effectively modified FAs for home-based settings
- Describe the resources we utilized to conduct FAs in home-based settings

Method

- BCBAs from ABACS submitted lists of FAs they had conducted
 - FAs were conducted as part of agency's standard service model
 - During assessment process or part of on-going treatment
 - Across all full-time BCBAs

Method

Criteria for inclusion:

- ► FA information readily available:
 - Operational definitions
 - Clear description of FA methodology
 - Raw data

Method

- ▶ Of all FAs conducted, 25 met the inclusion criteria
- Conducted between June 2013 and April 2015
- ► For each FA, we collected the following data:
 - Behavior assessed
 - ► FA type
 - FA results (Roane, Fisher, Kelley, Meyers, & Bouxsein, 2013)
 - Procedural Integrity (PI)
 - Interobserver Agreement (IOA)
 - Resources for conducting FA

Behaviors analyzed:

- Tantrum (7)
- ► Noncompliance (4)
- Self-Injurious Behavior (SIB) (4)
- Aggression (3)
- ► Food Refusal (2)
- Stereotypy (1)
- Loud Vocals / Screaming (1)
- Precursors to challenging behavior (1)
- Pica (1)
- Ripping (1)

- The 25 FAs will be presented in table format
- Tables organized by FA measurement method utilized
 - ► Table 1: Rate
 - Table 2: Frequency
 - Table 3: Percentage of Intervals
 - Table 4: Latency
- FAs further organized by FA type

Sample Table

Functional Analyses Organized by Measurement Method

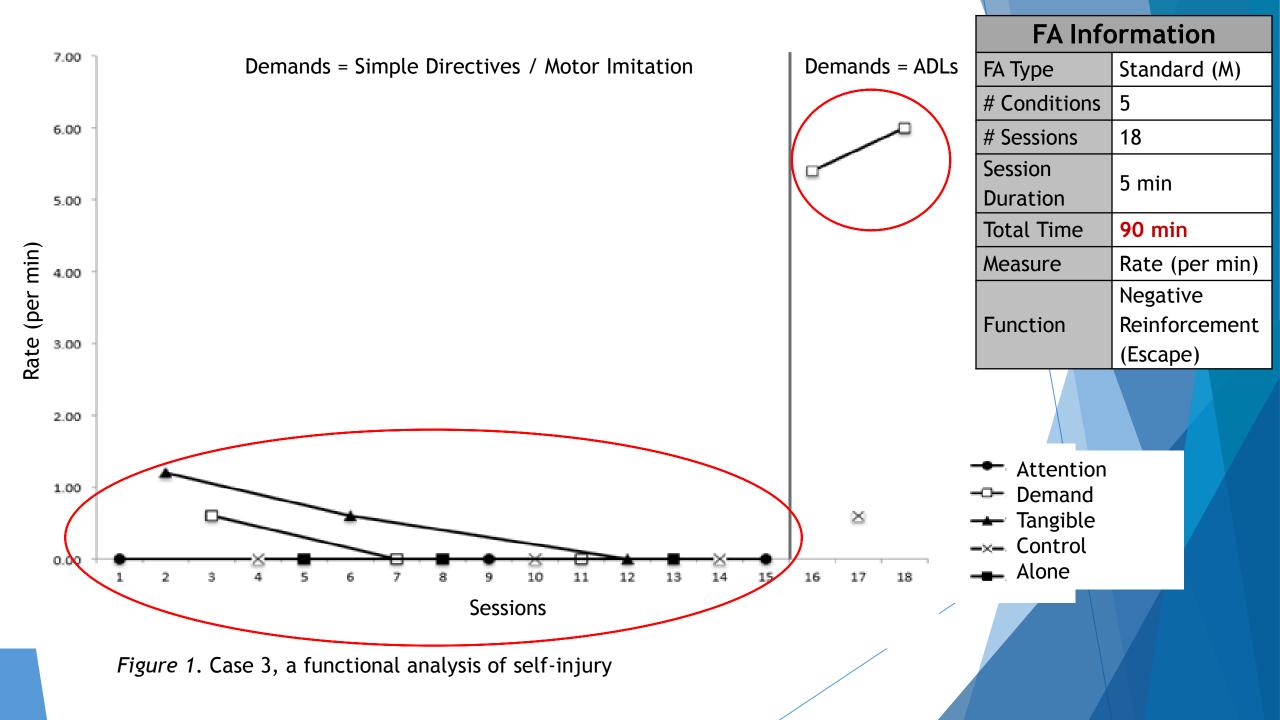

	Fu	nctional Ana	lysis Informati		
			Conditions Te	ested	
Case FA Type Behavior	Social Pos (Attn.)	Social Pos (Tang.)	Social Neg (Escape)	Auto. (Alone)	Control Other Function
	_				
ABACS, LLC					

Table 1

Mean Rate (per Min) of Problem Behavior for Each Functional Analysis Condition and Interpretation of the Function.

		Functional Analysis Information										
				Conditions Tested								
Case	FA Type	Behavior	Social Pos (Attn.)	Social Pos (Tang.)	Social Neg (Escape)	Auto. (Alone)	Control	Other	Function			
1	Standard (M)	AGG	0.5	10.67	6.33	-	0	-	Multiple			
2	Standard (M)	AGG/ED	3.00	-	3.67	1.67	0.67	-	Multiple			
3	Standard (M)	SIB	0.00	2.93	1.00	0.00	0	4.20	Escape			

Table 2

Mean Frequency (per Session) of Problem Behavior for Each Functional Analysis Condition and Interpretation of the Function.

				Functional A	nalysis Inform	ation					
		Conditions Tested									
Casa		Behavior	Social Pos	Social Pos	Social Neg	Auto.	Control	Other	Function		
Case	FA Type	Denavior	(Attn.)	(Tang.)	(Escape)	(Alone)	Control	Other	Function		
4	Standard (M)	SIB	1.33	1.33	0.33	4.67	0.67	-	Undifferentiated		
5	Standard (M)	SIB	2.00	2.67	0.00	7.67	4.00	-	Undifferentiated		
6	Standard (M)	Tantrum	3.00	9.67	10.33	-	0.00	-	Multiple		
7	Standard (M)	Pica	7.33	7.67	-	7.33	5.33	5.00	Automatic		

Table 2

Mean Frequency (per Session) of Problem Behavior for Each Functional Analysis Condition and Interpretation of the Function.

		Functional Analysis Information										
		Conditions Tested										
Case	FA Type	Behavior	Social Pos	Social Pos	Social Neg	Auto.	Control	Other	Function			
Case	га туре	Dellavioi	(Attn.)	(Tang.)	(Escape)	(Alone)	Control	Other	Function			
4	Standard (M)	SIB	1.33	1.33	0.33	4.67	0.67	-	Undifferentiated			
5	Standard (M)	SIB	2.00	2.67	0.00	7.67	4.00	-	Undifferentiated			
6	Standard (M)	Tantrum	3.00	9.67	10.33	-	0.00	-	Multiple			
7	Standard (M)	Pica	7.33	7.67	-	7.33	5.33	5.00	Automatic			
8	Brief	Ripping	1.00	4.00	3.00	0.00	0.00	_	Multiple			

Table 2

Mean Frequency (Per Session) of Problem Behavior for Each Functional Analysis Condition and Interpretation of the Function.

				Functional A	nalysis Inform	ation			
				(Conditions Tes	ted			
Case	FA Type	Behavior	Social Pos	Social Pos	Social Neg	Auto.	Control	Other	Function
Case	ТАТуре	Dellavioi	(Attn.)	(Tang.)	(Escape)	(Alone)	Control	Other	Function
4	Standard (M)	SIB	1.33	1.33	0.33	4.67	0.67	-	Undifferentiated
5	Standard (M)	SIB	2.00	2.67	0.00	7.67	4.00	-	Undifferentiated
6	Standard (M)	Tantrum	3.00	9.67	10.33	-	0.00	-	Multiple
7	Standard (M)	Pica	7.33	7.67	-	7.33	5.33	5.00	Automatic
8	Brief	Ripping	1.00	4.00	3.00	0.00	0.00	-	Multiple
9	Single-Function	Tantrum	-	-	8.25	-	0.00	-	Escape
10	Single-Function	Tantrum	-	11.33	-	-	0.00	-	Tangible
11	Single-Function	AGG	-	9.00	-	-	0.00	-	Tangible
12	Single-Function	NC	-	-	8.67	-	0.00	-	Escape
13	Single-Function	NC	-	-	0.00	-	0.00	-	Undifferentiated
14	Single-Function	NC	-	-	6.00	-	0.00	-	Escape
15	Single-Function	NC	-	-	3.00	-	0.00	-	Escape
16	Single-Function	SIB	68.00	-	-	-	62.50	-	Undifferentiated

Table 3

Mean Percentage of Intervals In Which Problem Behavior Occurred for Each Functional Analysis Condition and Interpretation of the Function.

				Fun	ctional Analysi Conditions Te		on		
Case	FA Type	Behavior	Social Pos (Attn.)	Social Pos (Tang)	Social Neg (Escape)	Auto. (Alone)	Control	Other	Function
17	Brief	Stereotypy	30%	-	0%	100%	83%	-	Multiple (Primarily Automatic)
		S, LLC TION & SERVICES							

Table 4

		Functional Analysis Information										
		Conditions Tested										
Case	FA Type	Behavior	Social Pos (Attn.)	Social Pos (Tang)	Social Neg (Escape)	Auto. (Alone)	Control	Other	Function			
18	Brief	Tantrum	300.0	17.0	190.0	-	7.5	24.0	Undifferentiated			

Table 4

_	Functional Analysis Information											
	Conditions Tested											
Case	FA Type	Behavior	Social Pos (Attn.)	Social Pos (Tang)	Social Neg (Escape)	Auto. (Alone)	Control	Other	Function			
18	Brief	Tantrum	300.0	17.0	190.0	-	7.5	24.0	Undifferentiated			
19	Trial-Based	Food Refusal	-	-	5.33	-	120.0	-	Escape			
20	Trial-Based	Food Refusal	-	1.74	-	-	120.0	-	Tangible			

Table 4

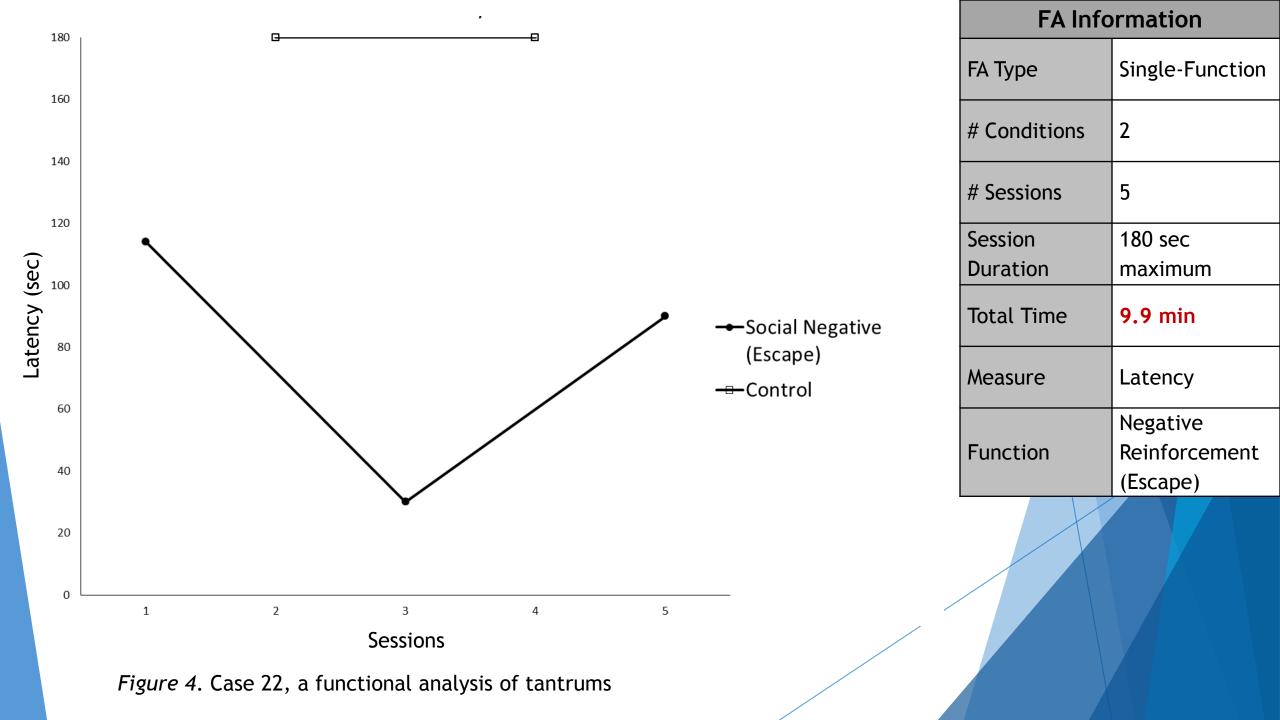

_	Functional Analysis Information										
		Conditions Tested									
Case	FA Type	Behavior	Social Pos (Attn.)	Social Pos (Tang)	Social Neg (Escape)	Auto. (Alone)	Control	Other	Function		
18	Brief	Tantrum	300.0	17.0	190.0	-	7.5	24.0	Undifferentiated		
19	Trial-Based	Food Refusal	-	-	5.33	-	120.0	-	Escape		
20	Trial-Based	Food Refusal	-	1.74	-	-	120.0	-	Tangible		
21	Precursor	AGG	-	-	-	-	180.0	2.0	Tangible		

Table 4

			Fu	unctional Ana	alysis Informa	ation					
		Conditions Tested									
Case	FA Type	Behavior	Social Pos (Attn.)	Social Pos (Tang)	Social Neg (Escape)	Auto. (Alone)	Control	Other	Function		
18	Brief	Tantrum	300.00	17.00	190.00	-	7.50	24.00	Undifferentiated		
19	Trial-Based	Food Refusal	-	-	5.33	-	120.00	-	Escape		
20	Trial-Based	Food Refusal	-	1.74	-	-	120.00	-	Tangible		
21	Precursor	AGG	-	-	-	-	180.00	2.00	Tangible		
22	Single-Function	Tantrum	-	-	95.30	-	180.00	-	Escape		
23	Single-Function	AGG	-	-	40.30	-	300.00	-	Escape		
24	Single-Function	AGG	-	72.30	-	-	186.00	-	Tangible		
25	Single-Function	Screaming	-	109.00	-	-	180.00	-	Tangible		

Table 5

Functional Analysis Design Information

Design Element	Average	Range
Conditions per FA	3.1	2-5
Number of Sessions per FA	8.1	4-18
Session Length per FA	5.1 min	2 - 10 min

PI data were collected for 16/25 (64%) FAs
 PI collected for at least 25% of sessions per FA

► IOA data were collected for 16/25 (64%) FAs

► IOA collected for at least 33% of sessions per FA

Table 6

Procedural Integrity (PI) and Interobserver Agreement (IOA)

Data	Average (%)	Range (%)
PI	97.35	93.50 - 100.0
IOA	93.07	76.33 - 100.0

> 20/25 (80%) of FAs conducted were differentiated

Lower than published data

Table 7

		Resources					
Case	Number of Staff Needed	Credentials of Staff	In-FA Time	In-Consult Time	Time to Collect PI	Time to Collect IOA	Cost
1	1	Masters	55	120	-	-	\$250
2	2	Ph.D.	88	420	24	284	\$2100
3	2	Masters	90	270	-	-	\$1125
4	2	Masters	150	180	39	162	\$750
5	2	Caregiver	150	180	22	62	\$750
6	1	Masters	60	120	-	-	\$250
7	1	Masters	75	90	25	95	\$375
8	1	Masters	50	180	-	-	\$375
9	1	Caregiver	30	150	22	90	\$312
10	1	Masters	30	120	-	-	\$250
11	1	Masters	50	120	-	-	\$250
12	1	Caregiver	15	120	8	47	\$250

Table 7

		Resources					
Case	Number of Staff Needed	Credentials of Staff	In-FA Time	In-Consult Time	Time to Collect PI	Time to Collect IOA	Cost
1	1	Masters	55	120	-	_	\$250
2	2	Ph.D.	88	420	24	284	\$2100
3	2	Masters	90	270	-	-	\$1125
4	2	Masters	150	180	39	162	\$750
5	2	Caregiver	150	180	22	62	\$750
6	1	Masters	60	120	-	-	\$250
7	1	Masters	75	90	25	95	\$375
8	1	Masters	50	180	-	-	\$375
9	1	Caregiver	30	150	22	90	\$312
10	1	Masters	30	120	-	-	\$250
11	1	Masters	50	120	-	-	\$250
12	1	Caregiver	15	120	8	47	\$250

Table 8

		Resources					
Case	Number of Staff Needed	Credentials of Staff	In-FA Time	In-Consult Time	Time to Collect PI	Time to Collect IOA	Cost
13	1	Masters	15	120	3	24	\$250
14	1	Masters	15	180	8	30	\$375
15	1	Masters	15	180	3	12	\$375
16	1	Masters	20	120	11	40	\$250
17	1	Masters	20	180	-	-	\$375
18	2	Masters	9.26	120	-	-	\$500
19	1	Masters	12.5	120	38	-	\$250
20	1	Masters	12.1	-	-	-	-
21	1	Masters	6.1	60	5	18	\$125
22	1	Masters	9.9	180	3	27	\$375
23	1	Masters	10.68	120	-	-	\$250
24	1	Masters	9.81	-	-	-	-
25	1	Masters	11.8	120	12	39	\$250

Table 8

		Resources					
Case	Number of Staff Needed	Credentials of Staff	In-FA Time	In-Consult Time	Time to Collect PI	Time to Collect IOA	Cost
13	1	Masters	15	120	3	24	\$250
14	1	Masters	15	180	8	30	\$375
15	1	Masters	15	180	3	12	\$375
16	1	Masters	20	120	11	40	\$250
17	1	Masters	20	180	-	-	\$375
18	2	Masters	9.26	120	-	-	\$500
19	1	Masters	12.5	120	38	-	\$250
20	1	Masters	12.1	_	-	-	-
21	1	Masters	6.1	60	5	18	\$125
22	1	Masters	9.9	180	3	27	\$375
23	1	Masters	10.68	120	-	-	\$250
24	1	Masters	9.81	-	-	-	-
25	1	Masters	11.8	120	12	39	\$250

Table 9

Resources Needed to Conduct Functional Analyses

Resource	Average	Range
Number of Staff	1.2	1-2
Time to Conduct FA	40 min	6 - 150 min
Consult Length	155 min	60 - 420 min
Cost	\$452.72	\$125 - \$2100

Discussion

- FAs can be modified for implementation in home-based settings
 - ▶ 80% of FAs had differentiated results
 - ▶ 97.35% Procedural integrity
 - ▶ 93.07% Interobserver agreement

Discussion

FAs can be cost-effective for clients

- Only 1-2 trained staff needed to conduct FA
- ▶ 40 minutes on average to conduct FA
- Average cost was \$452.72

- Limitations
 - Small sample size
 - Staff training data were not presented or analyzed
 - Treatment data were not presented or analyzed

Future Research

Future Research

Statistical analysis of FAs and resources needed to conduct them

- Future Research
 - Statistical analysis of FAs and resources needed to conduct them
 - Analysis of staff training needed for conducting FAs
 - ► Time Needed
 - Cost

- Future Research
 - Statistical analysis of FAs and resources needed to conduct them
 - Analysis of staff training needed for conducting FAs
 - ► Time Needed
 - Cost
 - Treatment data
 - The extent to which FAs lead to the implementation of effective, function-based treatments

Acknowledgements

- Thank you to:
 - Miranda Courant-Morgan
 - Allie Connealy
 - Katie Schmitt
 - ► Taylor Williams
 - Andrea Keesey

References

- Beavers, G. A., Iwata, B. A., & Lerman, D. C. (2013). Thirty years of research on the functional analysis of problem behavior. *Journal of Applied Behavior Analysis*, 46(1), 1-21. doi:10.1002/jaba.30
- Bloom, S. E., Lambert, J. M., Dayton, E., & Samaha, A. L. (2013). Teacher-conducted trial-based functional analyses as the basis for intervention. *Journal of Applied Behavior Analysis*, 46(1), 208-218. doi:10.1002/jaba.21
- Cihak, D., Alberto, P. A., & Frederick, L. D. (2007). Use of brief functional analysis and intervention evaluation in public settings. *Journal of Positive Behavior Interventions*, 9(2), 80-93. doi:10.1177/10983007070090020501
- Fritz, J. N., Iwata, B. A., Hammond, J. L., & Bloom, S. E. (2013). Experimental analysis of precursors to severe problem behavior. *Journal of Applied Behavior Analysis*, *46*(1), 101-129. doi:10.1002/jaba.27
- Gardner, A. W., Spencer, T. D., Boelter, E. W., DuBard, M., & Jennett, H. K. (2012). A systematic review of brief functional analysis methodology with typically developing children. *Education & Treatment of Children*, 35(2), 313-332. doi:10.1353/etc.2012.0014
- Hagopian, L. P., Rooker, G. W., Jessel, J., & DeLeon, I. G. (2013). Initial functional analysis outcomes and modifications in pursuit of differentiation: A summary of 176 inpatient cases. *Journal of Applied Behavior Analysis*, *46*(1), 88-100. doi:10.1002/jaba.25
- Hanley, G. P. (2012). Functional assessment of problem behavior: Dispelling myths, overcoming implementation obstacles, and developing new lore. *Behavior Analysis in Practice*, 5(1), 54-72. doi:PMC3546636
- Hanley, G. P., Iwata, B. A., & McCord, B. E. (2003). Functional analysis of problem behavior: A review. *Journal of Applied Behavior Analysis*, *36*(2), 147-185. doi:10.1901/jaba.2003.36-147

References

- Hanley, G. P., Jin, S., Vanselow, N. R., & Hanratty, L. A. (2014). Producing meaningful improvements in problem behavior of children with autism via synthesized analyses and treatments. *47*, 16-36. doi:10.1002/jaba.106
- Herscovitch, B., Roscoe, E. M., Libby, M. E., Bourret, J. C., & Ahearn, W. H. (2009). A procedure for identifying precursors to problem behavior. *Journal of Applied Behavior Analysis*, 42(3), 697-702. doi:10.1901/jaba.2009.42-697
- Iwata, B. A., Dorsey, M. F., Slifer, K. J., Bauman, K. E., & Richman, G. S. (1994). Toward a functional analysis of self-injury. Journal of Applied Behavior Analysis, 27(2), 197-209. doi:10.1016/0270-4684(82)90003-9. (Reprinted from Analysis and Intervention in Developmental Disabilities, 2, 3-20, 1982)
- Iwata, B. A., & Dozier, C. L. (2008). Clinical application of functional analysis methodology. *Behavior Analysis in Practice*, 1(1), 3-9. doi:PMC2846577
- Lydon, S., Healy, O., O'Reilly, M. F., & Lang, R. (2012). Variations in functional analysis methodology: A systematic review. *Journal of Developmental and Physical Disabilities*, 24(3), 301-326. doi:10.1007/s10882-012-9267-3
- Najdowski, A. C., Wallace, M. D., Ellsworth, C. L., MacAleese, A. N., & Cleveland, J. M. (2008). Functional analyses and treatment of precursor behavior. *Journal of Applied Behavior Analysis*, 41(1), 97-105. doi:10.1901/jaba.2008.41-97
- Northup, J., Wacker, D., Sasso, G., Steege, M., Cigrand, K., Cook, J., & DeRaad, A. (1991). A brief functional analysis of aggressive and alternative behavior in an outclinic setting. *Journal of Applied Behavior Analysis*, 24(3), 509-522. doi:10.1901/jaba.1991.24-509
- Roane, H. S., Fisher, W. W., Kelley, M. E., Mevers, J. L., & Bouxsein, K. J. (2013). Using modified visual-inspection criteria to interpret functional analysis outcomes. *Journal of Applied Behavior Analysis, 46*, 130-146.

References

- Smith, R. G., & Churchill, R. M. (2002). Identification of environmental determinants of behavior disorders through functional analysis of precursor behaviors. *Journal of Applied Behavior Analysis*, 35, 125-136.
- Thomason-Sassi, J. L., Iwata, B. A., Neidert, P. L., & Roscoe, E. M. (2011). Response latency as an index of response strength during functional analyses of problem behavior. *Journal of Applied Behavior Analysis*, 44(1), 51-67. doi:10.1901/jaba.2011.44-51
- Tincani, M. J., Castrogiavanni, A., & Axelrod, S. (1999). A comparison of the effectiveness of brief versus traditional functional analyses. *Research in Developmental Disabilities*, 20(5), 327-338. doi:10.1016/S0891-4222(99)00014-1
- Vollmer, T. R., & Northup, J. (1996). Some implications of functional analysis for school psychology. *School Psychology Quarterly*, 11, 76-92. doi: 10.1037/h0088922
- Wallace, M. D., & Iwata, B. A. (1999). Effects of session duration on functional analysis outcomes. *Journal of Applied Behavior Analysis*, 32(2), 175-183. doi:10.1901/jaba.1999.32-175

Using Functional Communication Training and Reinforcer Delay Fading to Treat Multiply-Maintained Aggressive Behavior

Ashley Williams

ABACS & Simmons College

Gretchen A. Dittrich

Simmons College

Functional Communication Training

A communication response results in access to reinforcer (Carr & Durand, 1985)

- Extinction (e.g., Fisher et al., 1993, Hagopian et al., 1998, Wacker et al., 1990)
- Functional communication training (FCT) is effective in reducing rates of severe problem behavior (e.g., Carr & Durand, 1985; Fisher et al., 1993; Hagopian, Fisher, Sullivan, Acquisto, & LeBlanc, 1998)
- FCT is the most published function-based treatment for problem behavior (Tiger, Hanley, & Bruzek, 2008)

Limitations of FCT

- FCT has its limitations (Fisher et al., 2000; Fisher et al., 1993; Tiger et al., 2008)
- The individual is given immediate access on a continuous schedule (Carr and Durand, 1985; Tiger et al., 2008)
- Parents/Caregivers/Teachers (Tiger et al., 2008)
 - The reinforcer may not be immediately available
 - Caregiver may be unavailable to facilitate delivery of the reinforcer
 - The reinforcer may only be intermittently available

Limitations of FCT

- Rates of responding are often higher than peers (Fisher et al., 2000; LeBlanc, Hagopian, Marhefka, & Wilke, 2001)
- **Escape-maintained behavior** (Reichle, Johnson, Monn, & Harris, 2010)
 - Requesting breaks at a high rate
 - Few learning opportunities
 - Limited tolerance to delays or denial

Schedule Thinning following FCT

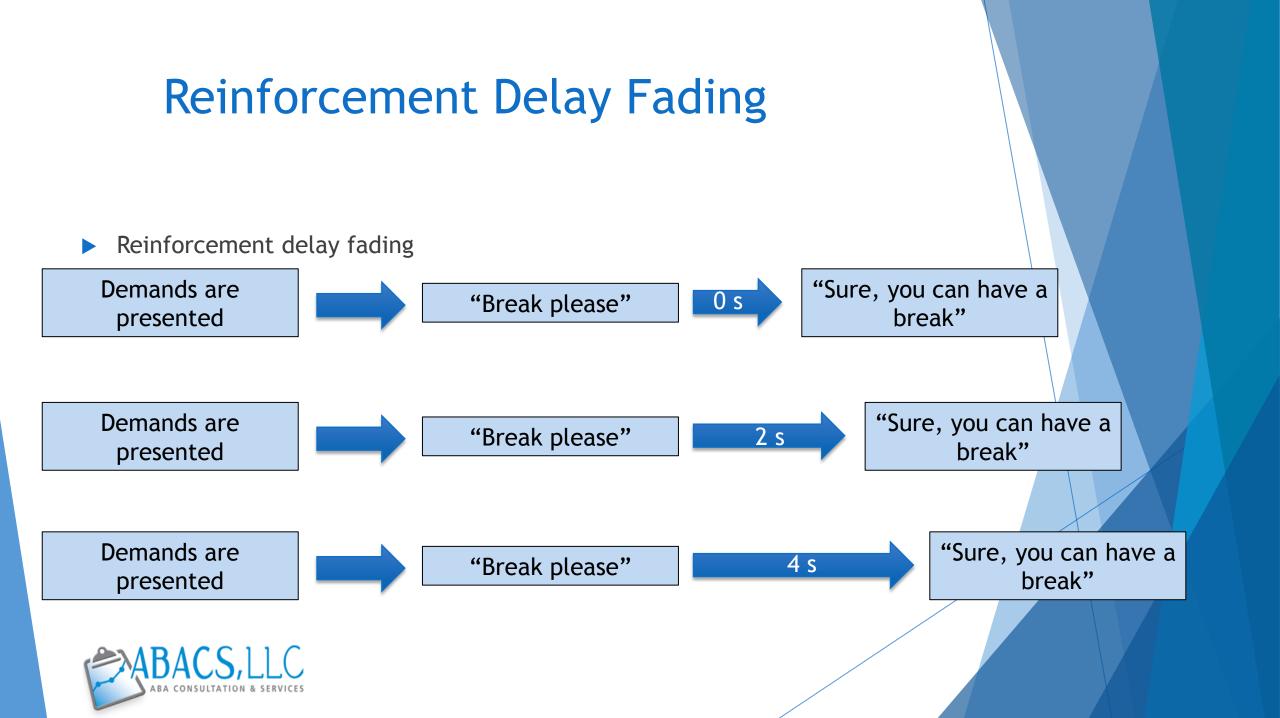
- Schedule thinning is needed (Hagopian, Boelter, & Jarmolowicz, 2011)
 - 1. Delay schedules

(e.g. Braithwaite & Richdale, 2000; Fisher et al., 2000; Hanley, Iwata, & Thompson 2001)

2. Chain schedules or demand fading

(e.g., Falcomata, Meuthing, Gainey, Hoffman, & Fragale, 2013; Fisher et al., 1993; Hagopian et al., 1998; Lalli et al., 1995)

3. Multiple schedules


(e.g., Fisher et al., 1998; Hagopian et al., 2004; Hanley et al., 2001)

4. Response restriction

(e.g., Hagopian et al., 2004; Roane, Fisher, Sgro, Falcomata, & Pabico, 2004)

 Only 29% of functional communication studies used schedule thinning following FCT (Hagopian et al., 2011)

Delay Schedules

 Reinforcement delay fading generally fails to increase delays greater than 30 s (Kelley, Lerman, Fisher, Roane, & Zangrillo, 2011)

- Signals may facilitate longer delay periods (Kelley et al., 2011)
 - For 2 of 3 participants:
 - Signal aided maintenance of responding during greater delays as compared to unsignaled delays

Reinforcement Delay

- Largely used to treat problem behavior maintained by social positive contingencies (i.e., attention, tangible) (e.g., Braithwaite & Richdale, 2000; Fisher et al., 2000; Hagopian et al., 2001; Hagopian et al., 1998)
- Braithwaite and Richdale (2000)
 - Escape maintained SIB and aggression
 - Multiply controlled escape and tangible
 - Treatment was separate for each function
 - > Did not specify whether demands were maintained during the delay period
 - EO may not have been in place during the delay

Purpose

- Use FCT and signaled reinforcement delay fading to decrease rates of aggression maintained by access to escape from demands and preferred items
- Establish high rates of communication and high, increasing rates of task completion as delay increased
- During ongoing home-based service delivery

Participant

- 3-year-old boy with autism spectrum disorder
- Full day preschool
- 10 hours/week of home-based ABA
- 2 hours/week of clinic-based 1:1 therapy and social skills
- Participant behaviors:
 - PECS (Bondy & Frost, 1994) & some vocal communication (3-5 words)
 - Aggressive behaviors

Setting

Home

- Living room
 - Included sofa, TV, small table and chairs, low and moderately preferred toys
 - ► Family members were often present and passing through the room
- Outpatient Clinic (Generalization)
 - ▶ Workspace was an 8'x8' cubicle with one open side facing a larger room with peers
 - 2-3 peers present during session

Materials

Materials

▶ iPad®

- PECS book
- Vivitar® DVR508 digital camcorder
- Instant Data® and Instant IOA®

Dependent Variables

- 1. Aggressive behaviors
- > 2. Task completion
- ► 3. Vocal communication responses
- 4. Nonvocal communication responses

– Total FCRs

Dependent Variables

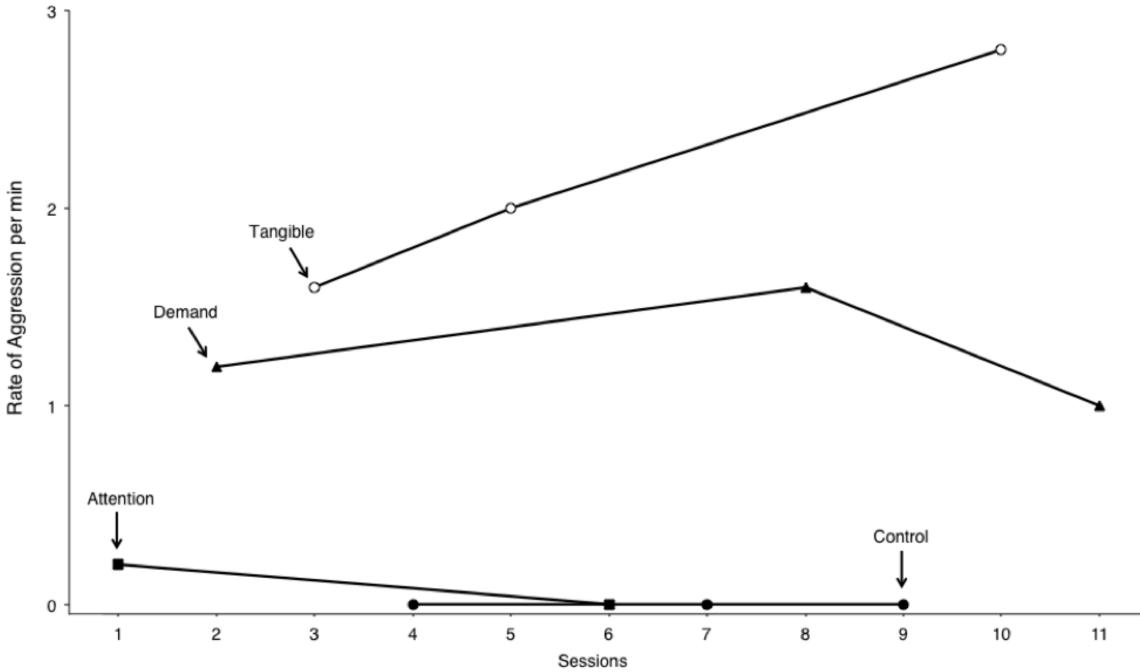
- Recorded total frequency
- Video recordings of sessions
- Rate of responding was calculated by dividing the total number of responses by the session length
 - During delay sessions, the session timer was paused during the reinforcement delay and excluded from the calculation of rate (Kelley et al., 2011)

Experimental Design

- Functional Analysis (FA)
 - FA was conducted using multi-element design (Iwata, Dorsey, Slifer, Bauman & Richman, 1982/1994)
 - ► Attention (A)
 - Demand (B)
 - ► Tangible (C)
 - Control (D)
 - ► ABCDCADBDCB

Experimental Design

Treatment


- Multiple treatment with reversal (Barlow & Hayes, 1979)
- Probes sessions of the terminal delay schedule
 - ► Baseline (E)
 - **Extinction** (F)
 - Functional communication training (G)
 - Reinforcement delay fading with extinction (H)
- ► EFGEGH

Functional Analysis (FA) Procedures

- Session length 5 min with a 1-3 minute break between sessions
- Attention, demand, tangible and control
- Based on Iwata and colleagues (1982/1994)

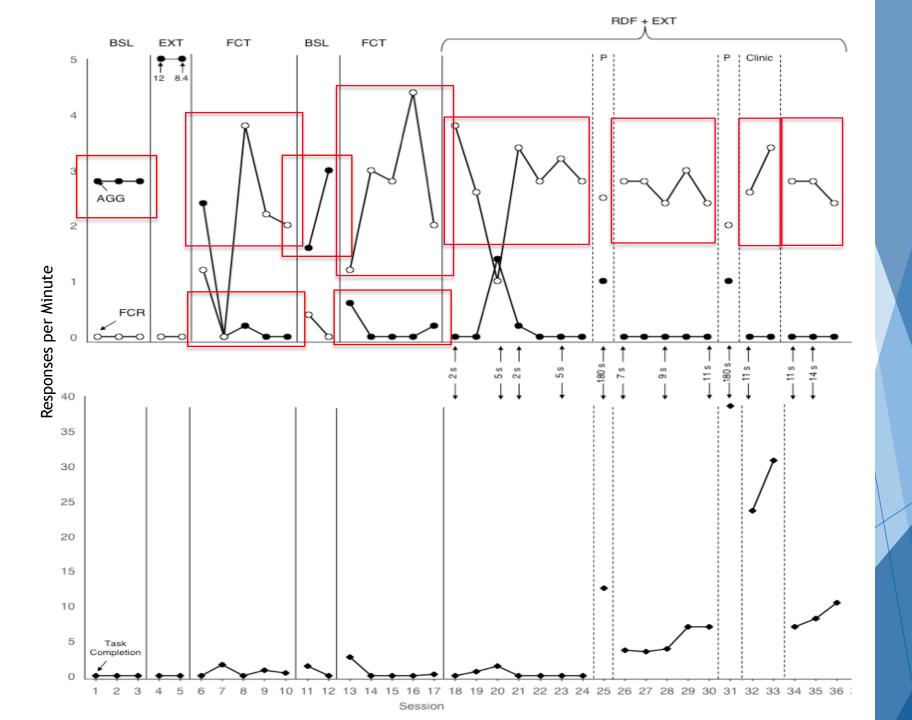
Procedures

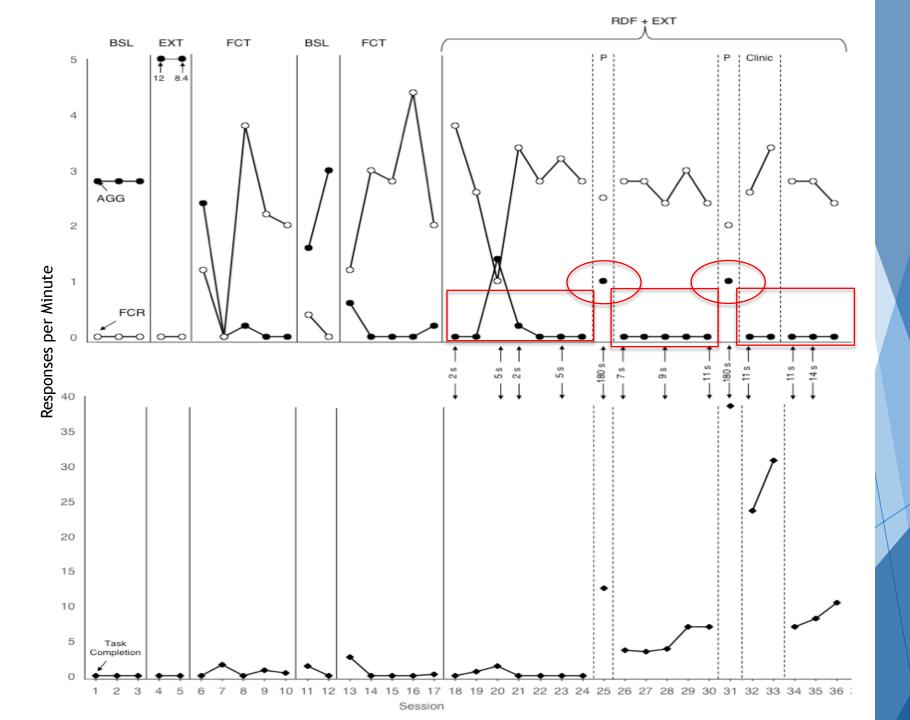
Treatment

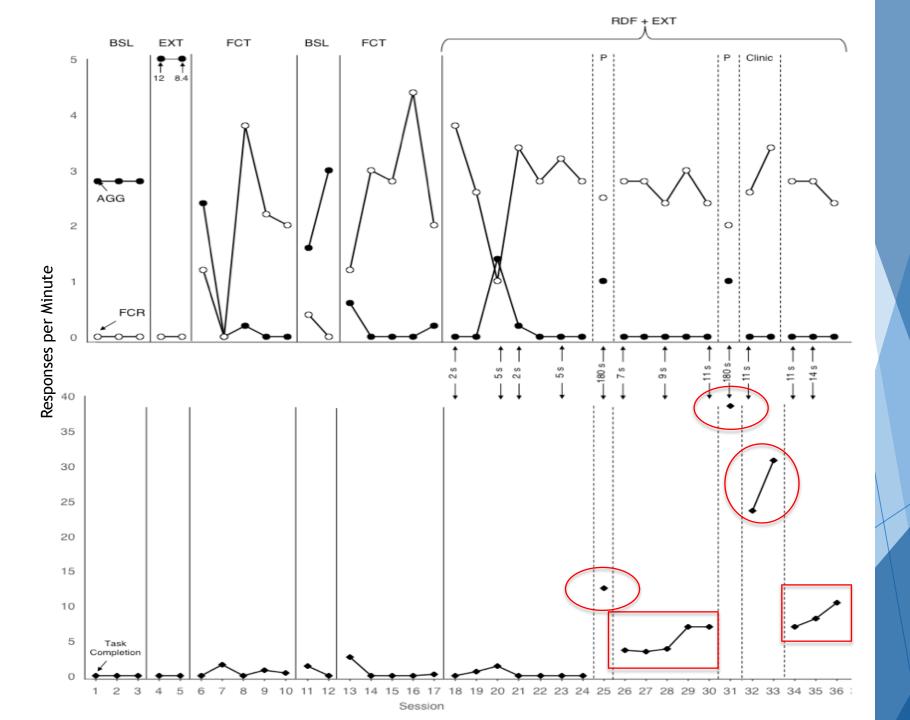
- All sessions were 5 minutes in length
- Probe sessions 2 minutes in length
- Across all phases, the antecedent conditions included the presentation of demands and access to the iPad® was withheld

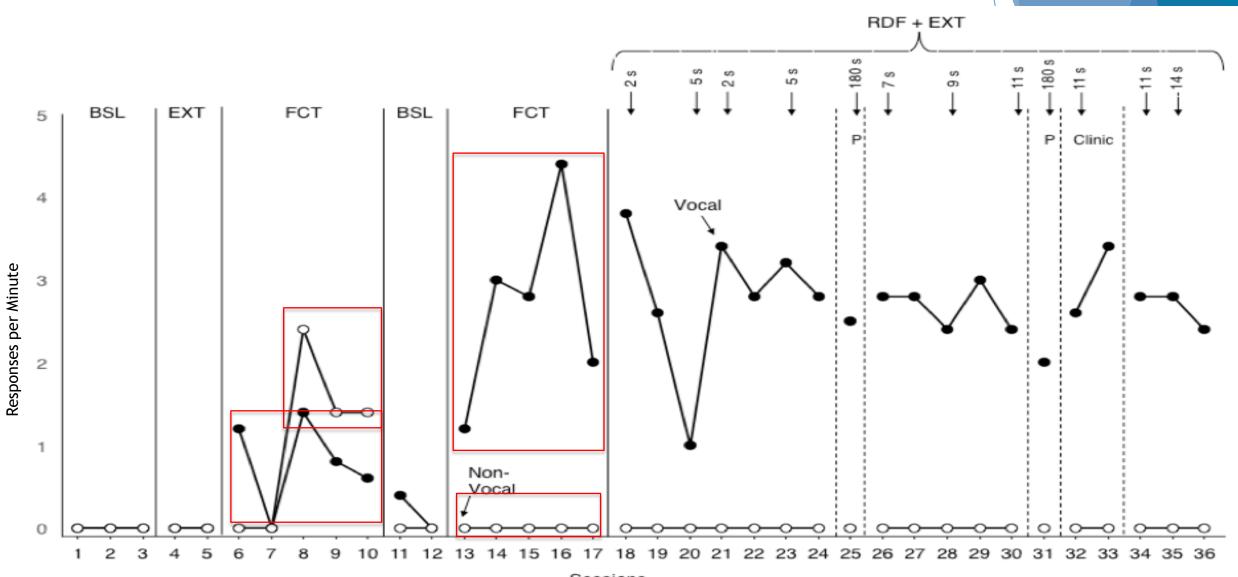
Procedures

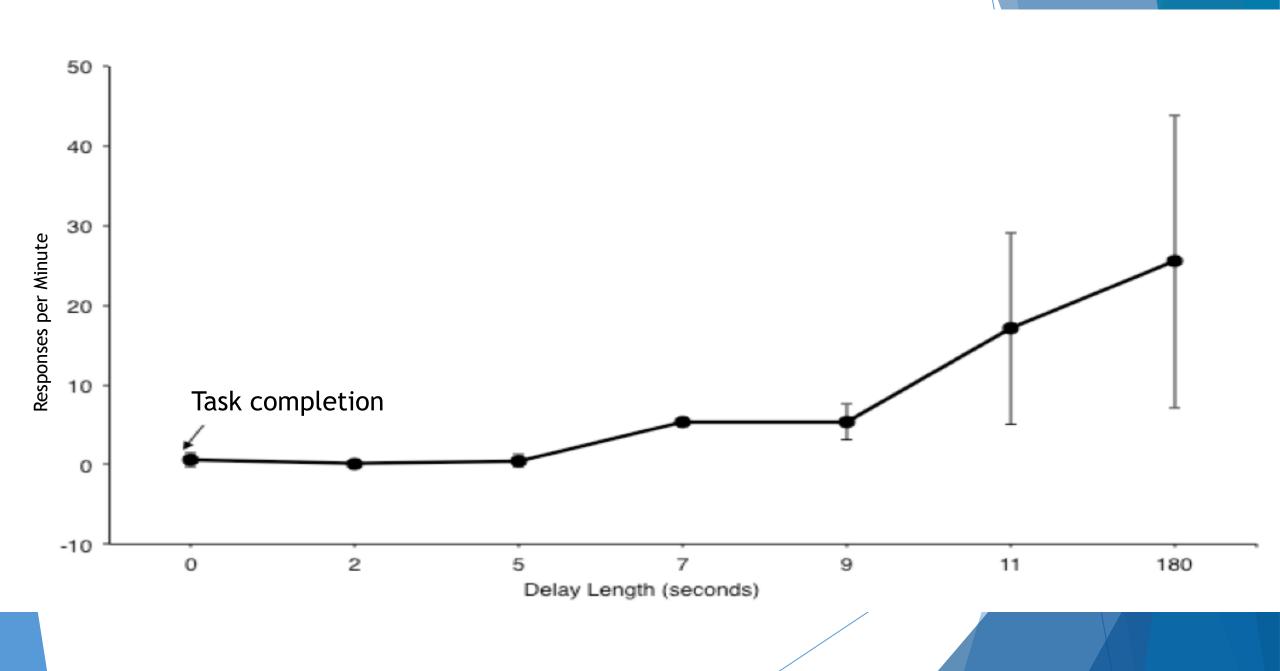
Baseline


- Functional reinforcers (escape and access to tangibles) were provided for aggression
- No other programmed consequence was provided
- Extinction
 - Aggression and FCRs were ignored
 - Task completion resulted in neutral praise
- FCT
 - FCRs resulted in 15 s access to functional reinforcers (escape and access to tangibles)
 - Least-to-most prompting was provided for task completion, and praise for compliance




Procedures (continued)


- Delay fading
 - Contingent on FCRs, the therapist stated "wait" and showed a visual wait sign for the duration of the delay
 - > Demands were maintained during the delay and praise was provided for compliance
 - Delay length was increased by 30% following 2 consecutive sessions with high rates of FCR & low rates of aggression



Sessions

IOA & PI

- Interobserver Agreement
 - ► 70% of sessions
 - Average at least 95% across all dependent variables
- Procedural Integrity
 - Procedural integrity data were collected for 41% of sessions and averaged 91.5% (range: 85.7%-100%)

Discussion

- Treatment package was successful
 - Reduced rates of aggression
 - ► High rates of FCR
 - High rates of task completion
- Responding was maintained to a delay period of 14 s
- Probe sessions indicated reemergence of aggression
 - Not yet able to rapidly increase delay length

Discussion

- Generality of the treatment was assessed
- Support for previous research
 - Effectiveness of FCT in treating problem behavior (Carr & Durand, 1985)
 - Effectiveness of reinforcement delay fading (Tiger et al., 2008)
 - Need for schedule thinning following FCT
 - Escape-maintained behaviors
 - Increasing learning opportunities

Limitations

- Probe design
 - Probe conducted after 5th session of reinforcement delay fading
 - Design could be strengthened by conducting probe following FCT
- Additional teaching opportunities during service delivery
 - Acquisition of FCR may have been aided by ongoing service delivery
- Only 1 participant

Future Research

- Extend beyond 14 s delay length
- Address Kelley and colleagues (2011) concern that delays in applied research have not been demonstrated beyond 30 s
- Evaluate signaled versus unsignaled delays (Kelley et al., 2011)
- Combine other methods for schedule thinning, recommended by Tiger and colleagues (2008)

Future Research

1. Delay schedules

(e.g. Braithwaite & Richdale, 2000; Fisher et al., 2000; Hanley, Iwata, & Thompson 2001)

2. Chain schedules or demand fading

(e.g., Falcomata, Meuthing, Gainey, Hoffman, & Fragale, 2013; Fisher et al., 1993; Hagopian et al., 1998; Lalli et al., 1995)

3. Multiple schedules

(e.g., Fisher et al., 1998; Hagopian et al., 2004; Hanley et al., 2001)

4. Response restriction

(e.g., Hagopian et al., 2004; Roane, Fisher, Sgro, Falcomata, & Pabico, 2004)

Acknowledgements

- Thank you to:
 - Brandon Herscovitch
 - Stephanie Phelan
 - Meghan Clausen
 - Ksenia Kravtchenko
 - Christine Ahearne
 - Allie Connealy

References

- Betz, A. M., Fisher, W. W., Roane, H. S., Mintz, J. C., & Owen, T. M. (2013). A component analysis of schedule thinning during functional communication training. Journal of Applied Behavior Analysis, 46(1), 219-241. doi:10.1002/jaba.23
- Carr, E. G., & Durand, V. M. (1985). Reducing behavior problems through functional communication training. Journal of Applied Behavior Analysis, 18(2), 111-26. doi:10.1901/jaba.1985.18-111
- Falcomata, T., S., Muething, C., S., Gainey, S., Hoffman, K., & Fragale, C. (2013). Further evaluations of functional communication training and chained schedules of reinforcement to treat multiple functions of challenging behavior. Behavior Modification, 37(6), 723-746. doi:10.1177/0145445513500785
- Fisher, W. W., Thompson, R. H., Hagopian, L. P., Bowman, L. G., & Krug, A. (2000). Facilitating tolerance of delayed reinforcement during functional communication training. Behavior Modification, 24(1), 3. doi:10.1177/0145445500241001
- Fisher, W., Piazza, C., Cataldo, M., Harrell, R., Jefferson, G., & Conner, R. (1993). Functional communication training with and without extinction and punishment. Journal of Applied Behavior Analysis, 26(1), 23. doi:10.1901/jaba.1993.26-23
- Hagopian, L. P., Fisher, W. W., Sullivan, M. T., Acquisto, J., & LeBlanc, L. A. (1998).
 Effectiveness of functional communication training with and without extinction and punishment: A summary of 21 inpatient cases. Journal of Applied Behavior Analysis, 31(2), 211-235. doi:10.1901/jaba.1998.31-211
 doi:10.1901/jaba.2005.43-04

Hagopian, L. P., Kuhn, S. A. C., Long, E. S., & Rush, K. S. (2005). Schedule thinning following communication training: Using competing stimuli to enhance tolerance to decrements in reinforcer density. Journal of Applied Behavior Analysis, 38(2), 177-193.

Hagopian, L. P., Toole, L. M., Long, E. S., Bowman, L. G., & Lieving, G. A. (2004). A comparison of dense-to-lean and fixed lean schedules of alternative reinforcement and extinction. Journal of Applied Behavior Analysis, 37(3), 323-337. doi:10.1901/jaba.2004.37-323

Hagopian, L. P., Wilson, D. M., & Wilder, D. A. (2001). Assessment and treatment of problem behavior maintained by escape from attention and access to tangible items. Journal of Applied Behavior Analysis, 34(2), 229-232. doi:10.1901/jaba.2001.34-229

Hanley, G. P., Iwata, B. A., & Thompson, R. H. (2001). Reinforcement schedule thinning following treatment with functional communication training. Journal of Applied Behavior Analysis, 34(1), 17. doi:10.1901/jaba.2001.34-17

Horner, R. H., & Day, H. M. (1991). The effects of response efficiency on functionally equivalent competing behaviors. Journal of Applied Behavior Analysis, 24(4), 719-32. doi:10.1901/jaba.1991.24-719

Kelley, M. E., Lerman, D. C., Fisher, W. W., Roane, H. S., & Zangrillo, A. N. (2011).
 Reinforcement delay fading during differential reinforcement of communication: The effects of signals on response maintenance. Journal of the Experimental Analysis of Behavior, 96(1), 107-122. doi:10.1901/jeab.2011.96-107

- Kurtz, P. F., Chin, M. D., Huete, J. M., Tarbox, R. S. F., O'Connor, J. T., Paclawskyj, T. R., & Rush, K. S. (2003). Functional analysis and treatment of self-injurious behavior in young children: A summary of 30 cases. Journal of Applied Behavior Analysis, 36(2), 205. doi:10.1901/jaba.2003.36-205
- Lalli, J. S., Casey, S., & Kates, K. (1995). Reducing escape behavior and increasing task completion with functional communication training, extinction, and response chaining. Journal of Applied Behavior Analysis, 28(3), 261-268. doi:10.1901/jaba.1995.28-261
- LeBlanc, L. A., Hagopian, L. P., Marhefka, J. M., & Wilke, A. E. (2001). Effects of therapist gender and type of attention on assessment and treatment of attention-maintained destructive behavior. Behavioral Interventions, 16(1), 39-57. doi:10.1002/bin.73.abs

Michael, J. (1993). Establishing operations. The Behavior Analyst, 16(2), 191-206.

- Reichle, J., Johnson, L., Monn, E., & Harris, M. (2010). Task engagement and escape maintained challenging behavior: Differential effects of general and explicit cues when implementing a signaled delay in the delivery of reinforcement. Journal of Autism & Developmental Disorders, 40(6), 709-720. doi:10.1007/s10803-010-0946-6
- Roane, H. S., Fisher, W. W., Sgro, G. M., Falcomata, T. S., & Pabico, R. R. (2004). An alternative method of thinning reinforcer delivery during differential reinforcement. Journal of Applied Behavior Analysis, 37(2), 213. doi:10.1901/jaba.2004.37-213
- Tiger, J. H., Hanley, G. P., & Bruzek, J. (2008). Functional communication training: A review and practical guide. Behavior Analysis in Practice, 1(1), 16-23.
- Wacker, D. P., & Others, A. (1990). A component analysis of functional communication training across three topographies of severe behavior problems. Journal of Applied Behavior Analysis, 23(4), 417-29. doi:10.1901/jaba.1990.23-417

Applications of Clinic-Based Research into Home Settings

Kimberly A. Diggs Kevin J. Schlichenmeyer Kara A. LaCroix Krystie M. Fleck

THE AUTISM COMMUNITY THERAPISTS

Introduction

 Pre-treatment approach to eliminating challenging behavior

Introduction

- Pre-treatment approach to eliminating challenging behavior
- Exponential growth within the past 30 years (Beavers, Iwata, & Lerman, 2013)

The Past 10 Years of Research

Setting	Number of Studies Published
Hospital (inpatient)	90
School	70
Clinic (outpatient)	34
Home	25
Institution	10
Vocational Program	9
Community	1

(Beavers, Iwata, & Lerman, 2013)

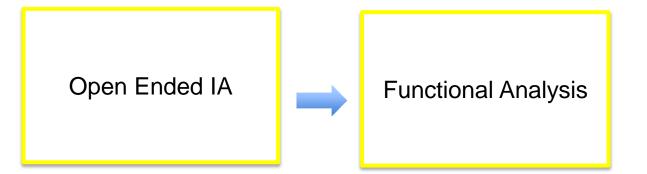
Why?

Why?

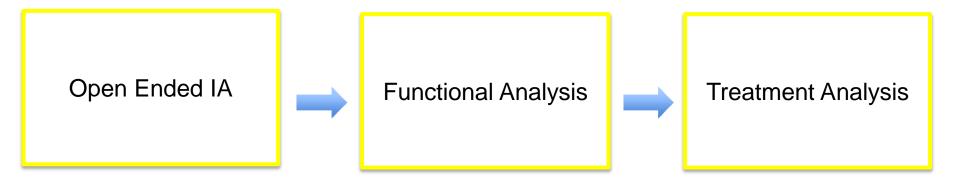
• Conversion from old lore to new lore (Hanley, 2012)

Why?

- Conversion from old lore to new lore (Hanley, 2012)
- This exists despite evidence in the contrary (Thompson et al., 2007)


Purpose of the Study

• Comprehensive treatment package for severe problem behavior in the Home setting (Hanley et al., 2014)

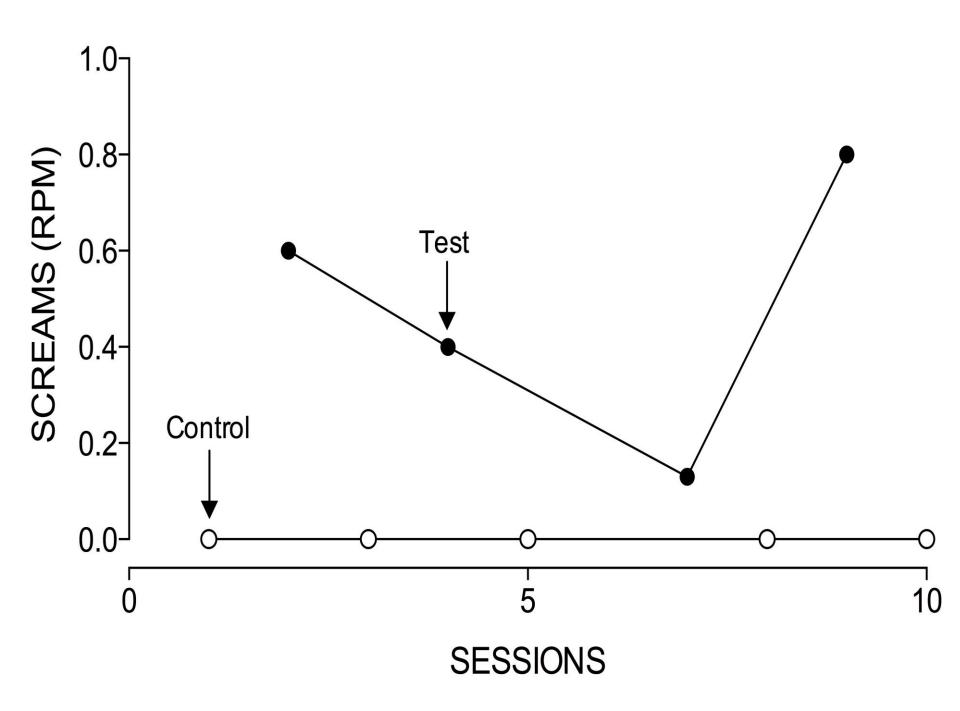

Comprehensive Treatment Package

Open Ended IA

Comprehensive Treatment Package

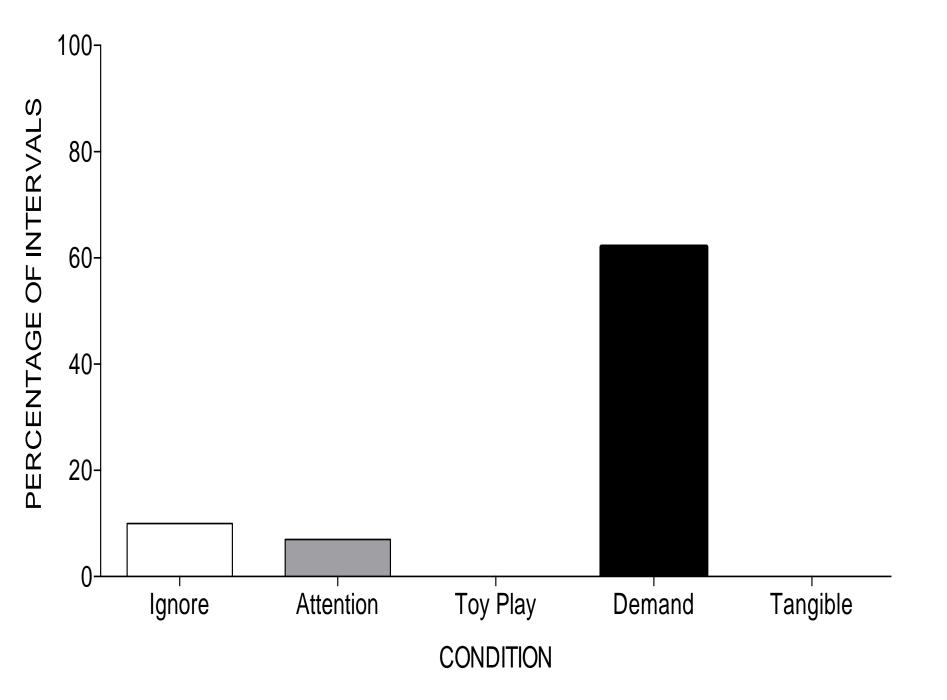
Comprehensive Treatment Package

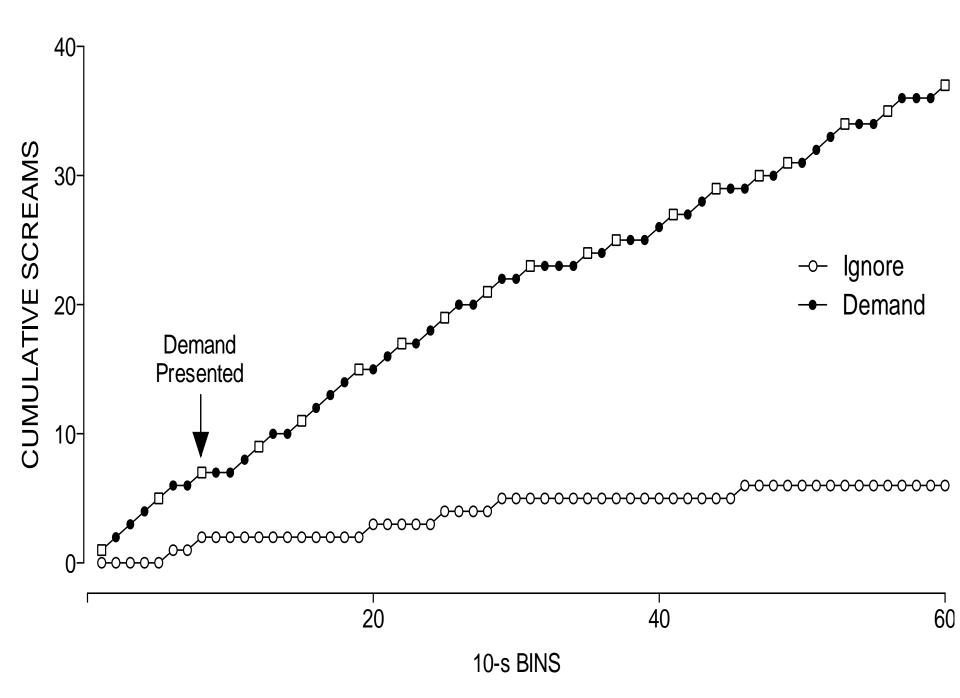
Participant	Age	Diagnosis	Target Behavior	Setting
Adam	9	Autism Spectrum Disorder	Screams	Home


Participant	Age	Diagnosis	Target Behavior	Setting
Adam	9	Autism Spectrum Disorder	Screams	Home
Lola	6	PDD-NOS	Screams	Home

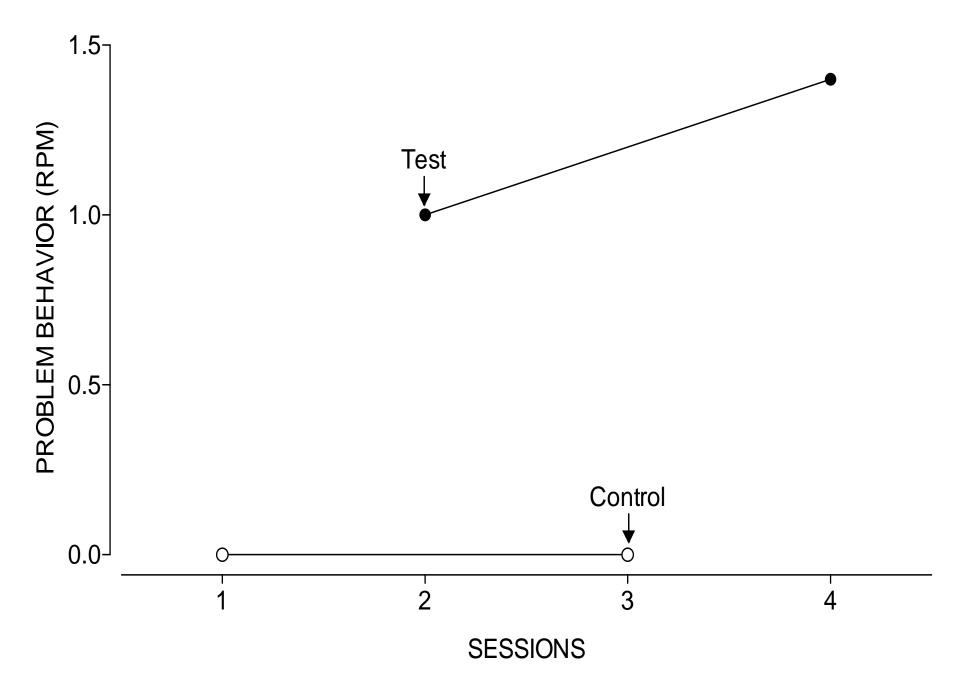
Participant	Age	Diagnosis	Target Behavior	Setting
Adam	9	Autism Spectrum Disorder	Screams	Home
Lola	6	PDD-NOS	Screams	Home
Joseph	20	Autism Spectrum Disorder	Vocal Protests & Aggression	Home

Participant	Age	Diagnosis	Target Behavior	Setting
Adam	9	Autism Spectrum Disorder	Screams	Home
Lola	6	PDD-NOS	Screams	Home
Joseph	20	Autism Spectrum Disorder	Vocal Protests & Aggression	Home


Adam: Functional Analysis

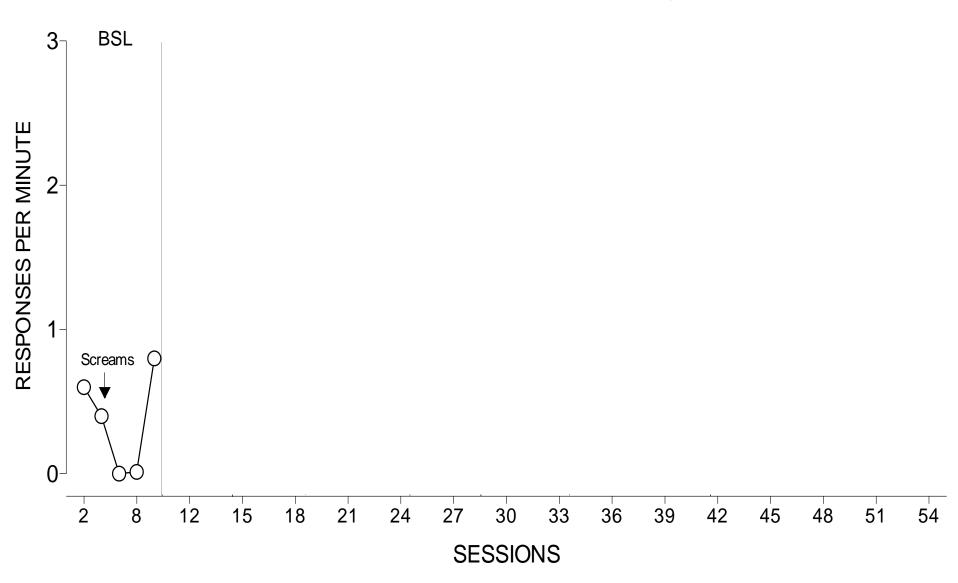

- Test
 - "iPad is all done, it is time to get to work!"
 - Preferred activity interruption and presentation of academic demands
 - Screams produced 30 s demand removal and iPad delivery
- Control
 - "You can have some iPad time!"
 - Continuous access to iPad time
 - No programmed consequences

Lola: Functional Analysis


- Functional Analysis
 - Ignore, Attention, Toy Play, Demand and Tangible (Derby et al., 1992)

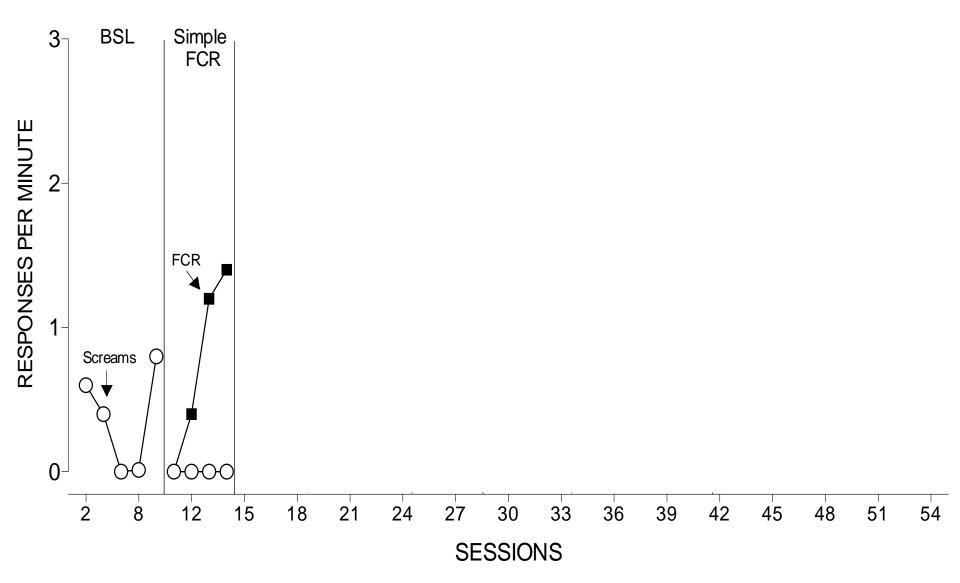
Joseph: Functional Analysis

- Test
 - "T.V. is all done, it is time to get to work!"
 - Preferred activity interruption and presentation of academic demands
 - Problem behavior produced 30 s demand removal and iPad delivery
- Control
 - "You can have some T.V. time!"
 - Continuous access to T.V. time
 - No programmed consequences

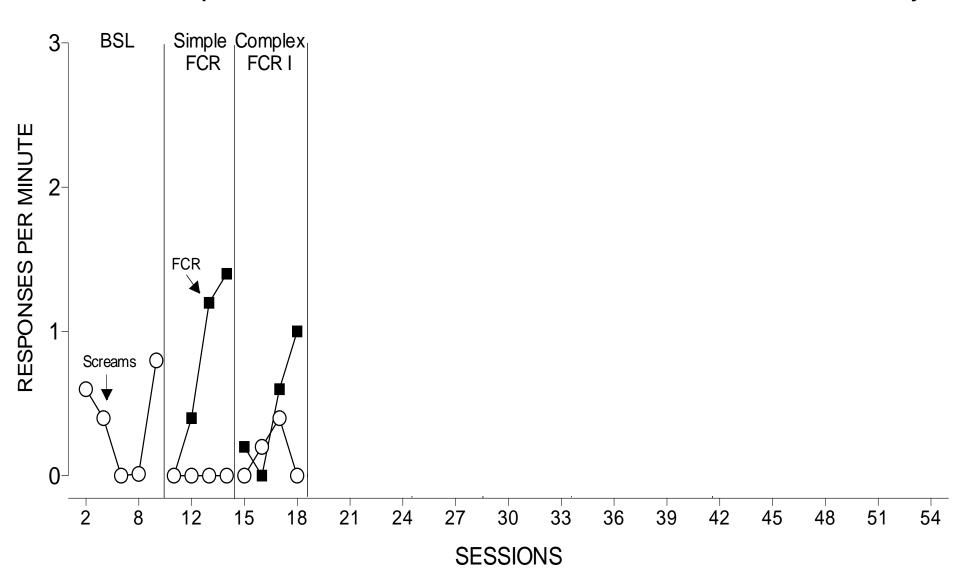

Methods

- Experimental Design:
 - 5 min sessions
 - FCR → Least-to-most verbal
 - Attention Gaining Response \rightarrow Least-to-most physical
 - Treatment effects were determined via a changing criterion design.

Participant	Age	Diagnosis	Target Behavior	Setting
Adam	9	Autism Spectrum Disorder	Screams	Home

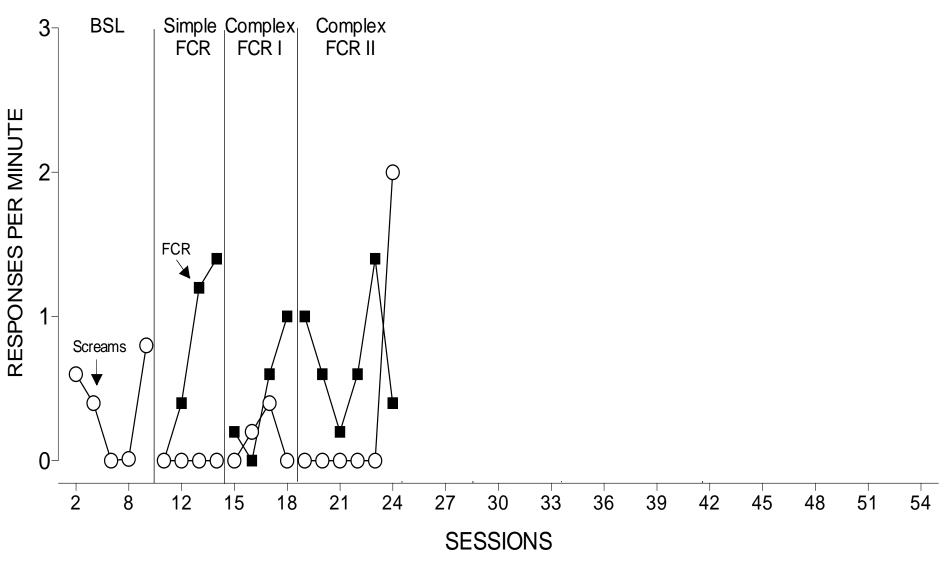

Baseline: FCR→ Extinction Screams → 30 s demand removal and iPad delivery

Baseline: FCR → Extinction Screams → 30 s demand removal and iPad delivery

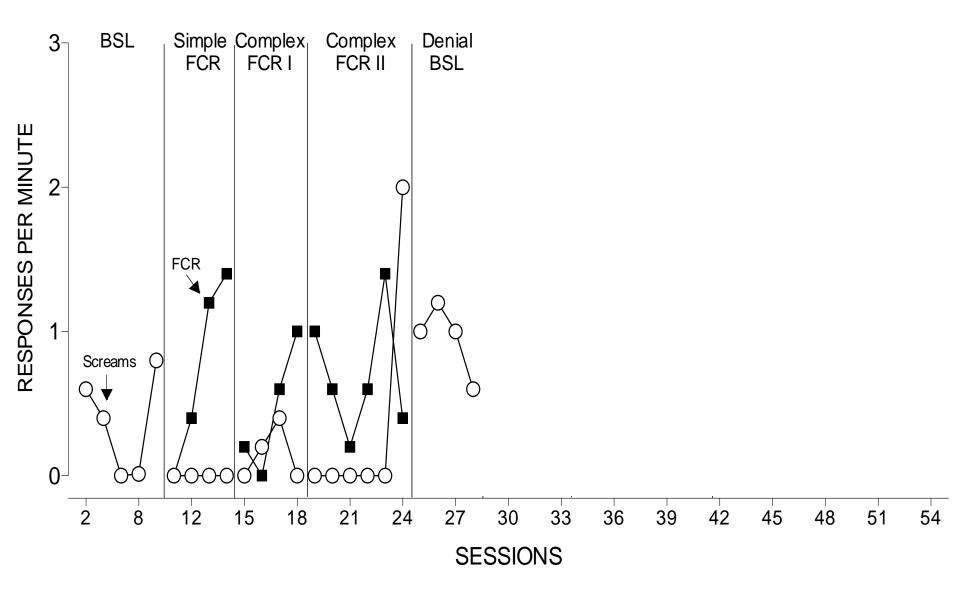

Simple FCR: "More, please!" \rightarrow 30 s demand removal and iPad access; Screams \rightarrow Extinction

Simple FCR: "More, please!" \rightarrow 30 s demand removal and iPad access; Screams \rightarrow Extinction

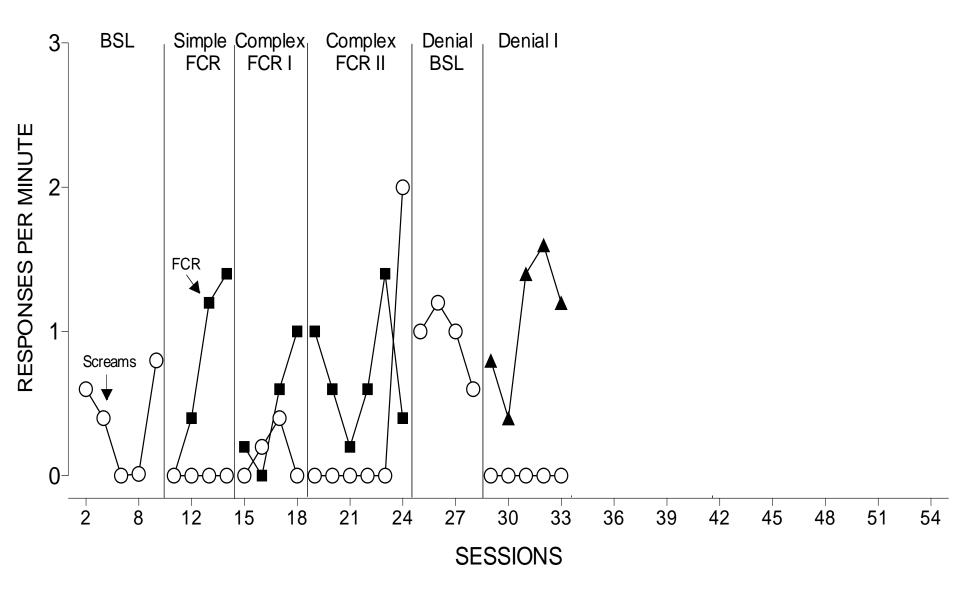
Complex FCR I: Orients toward therapist with eye contact \rightarrow "I want more, please!" \rightarrow 30 s demand removal and iPad delivery


Complex FCR I: Orients toward therapist with eye contact \rightarrow "I want more, please!" \rightarrow 30 s demand removal and iPad delivery

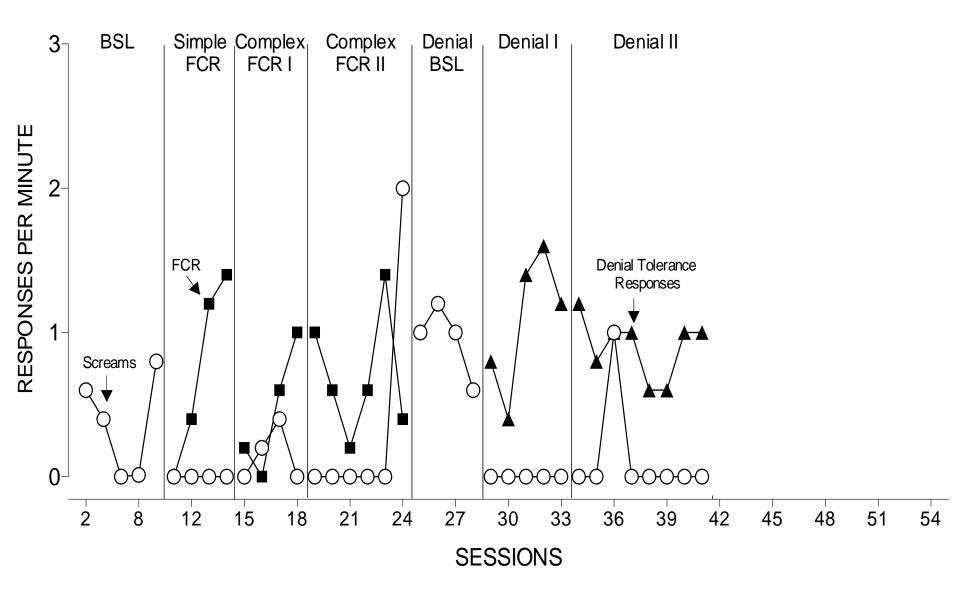
Complex FCR II: Orients toward therapist with eye contact \rightarrow taps therapist \rightarrow "I want more, please!" \rightarrow 30 s demand removal and iPad delivery


Complex FCR II: Orients toward therapist with eye contact \rightarrow taps therapist \rightarrow "I want more, please!" \rightarrow 30 s demand removal and iPad

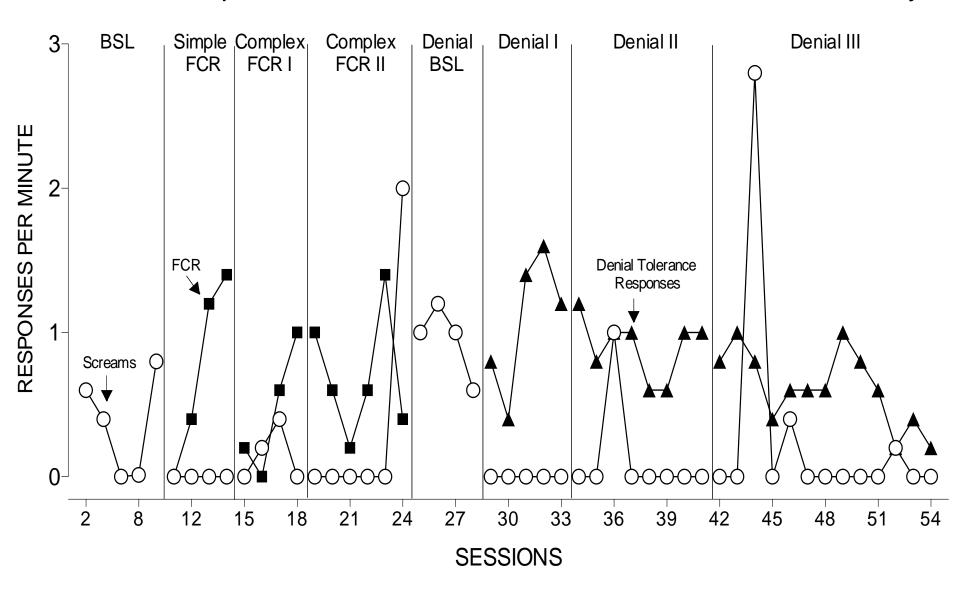
dalis rami


Denial Baseline: Complex FCR III → "Not right now"; Screams → demand removal and 30 s iPad delivery

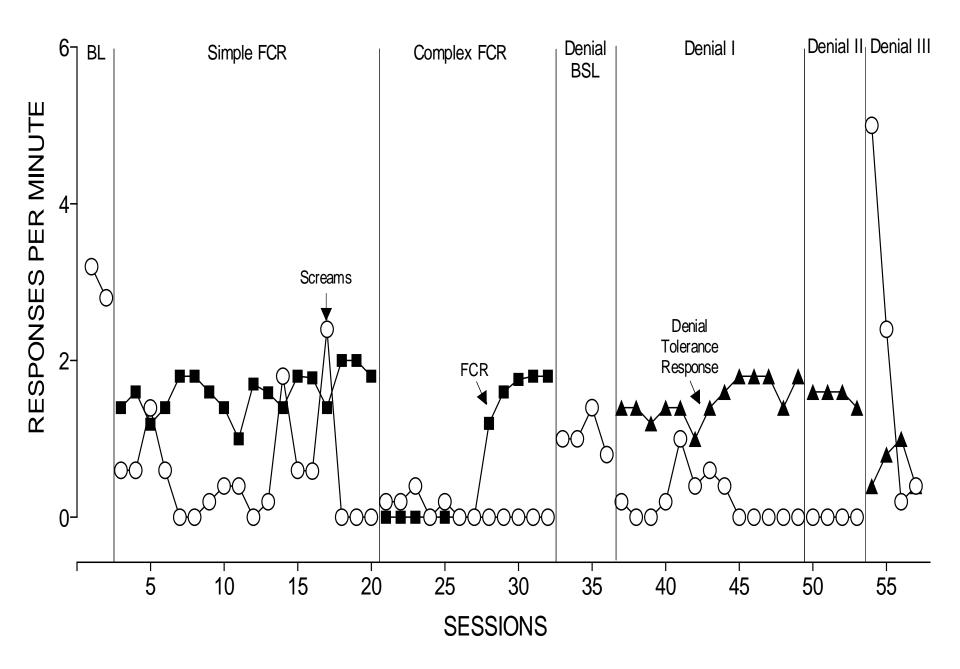
Denial Baseline: Complex FCR III → "Not right now"; Screams → demand removal and 30 s iPad delivery


Denial I: Complex FCR III \rightarrow "Not right now" \rightarrow "Okay" \rightarrow demand removal and 30 s iPad delivery

Denial I: Complex FCR III \rightarrow "Not right now" \rightarrow "Okay" \rightarrow demand removal and 30 s iPad delivery


Denial II: Complex FCR III → "Not right now" → "Okay" → takes a deep breath → demand removal and 30 s iPad delivery

Denial II: Complex FCR III → "Not right now" → "Okay" → takes a deep breath → demand removal and 30 s iPad delivery


Denial III: Complex FCR III \rightarrow "Not right now" \rightarrow "Okay" \rightarrow takes a deep breath \rightarrow completes task \rightarrow demand removal and 30 s iPad delivery

Denial III: Complex FCR III \rightarrow "Not right now" \rightarrow "Okay" \rightarrow takes a deep breath \rightarrow completes task \rightarrow demand removal and 30 s iPad delivery

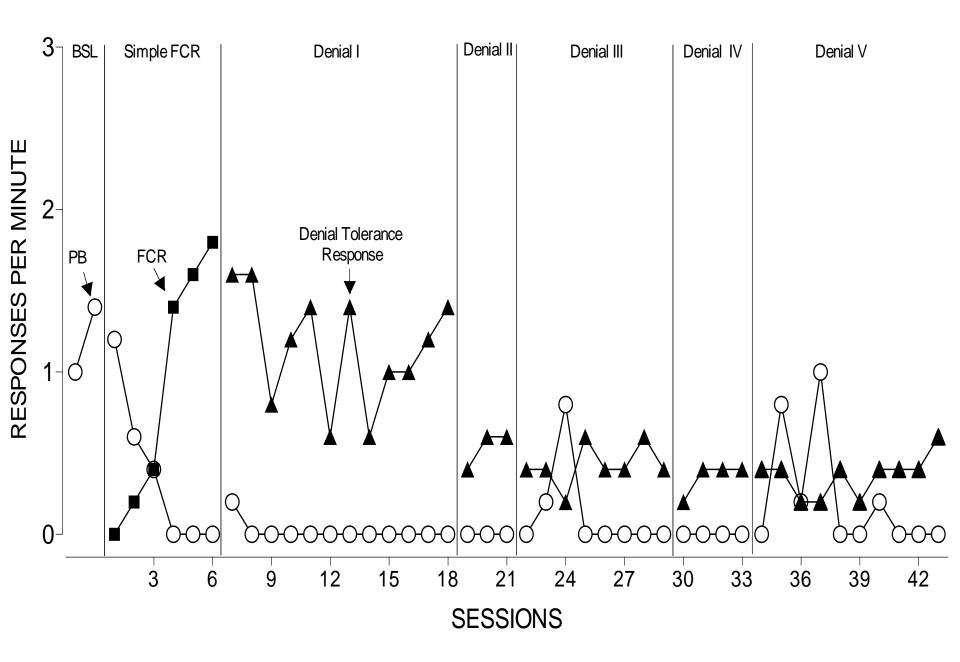
Participant and Setting

Participant	Age	Diagnosis	Target Behavior	Setting
Lola	6	PDD-NOS	Screams	Home

Participant and Setting

Participant	Age	Diagnosis	Target Behavior	Setting
Joseph	20	Autism Spectrum Disorder	Vocal Protests & Aggression	Home

Joseph: Treatment Analysis


- Denial Training without Extinction
 - Problem behavior produced 30 s demand removal and tangible delivery

Denial Tolerance Training

Indiscriminable Contingencies

Denial Tolerance Training

- Indiscriminable Contingencies
 - Contingencies in which make it difficult for the learner to predict when reinforcement will be delivered
 - Randomly intersperse chains from the treatment analysis throughout the intervention

Results

Participant	Problem Behavior: Reduction from Baseline	Modification
Adam	41%	No substantial modification
Lola	86%	Isolated contingency in analysis
Joseph	91%	No extinction

Limitations


• Evidence of generalization to parents, novel settings and evocative events.

Limitations

- Evidence of generalization to parents, novel settings and evocative events.
- No systematic decision criteria for determining when to add complexity to mands/denial chain completion

Summary

 Conversion to the new lore allows for practitioners to employ systematic and behavior analytic interventions in the home setting (Hanley, 2012)

Thank you!

Assessment and Treatment of Problem Behavior Exhibited in the Community

Kara A. LaCroix Kevin J. Schlichenmeyer Kimberly A. Diggs

THE AUTISM COMMUNITY THERAPISTS

Introduction

Setting	Number of Studies Published
Hospital (inpatient)	90
School	70
Clinic (outpatient)	34
Home	25
Institution	10
Vocational Program	9
Community	1

Previous Research

- Functional Behavior Assessment (Carr & Carlson, 1983)
 - Observation without manipulation

Previous Research

- Functional Behavior Assessment (Carr & Carlson, 1983)
 - Observation without manipulation
- Functional analysis (Tarbox et al., 2003)
 - Contingencies relevant to community settings?

- Conceptual Challenges
 - Relevant antecedents and consequences events difficult to manipulate

Conceptual Challenges

- Relevant antecedents and consequences events difficult to manipulate
- Contingencies responsible for problem behavior may vary across settings (Lang et al., 2010, 2009, 2008)

Conceptual Challenges

- Relevant antecedents and consequences events difficult to manipulate
- Contingencies responsible for problem behavior may vary across settings (Lang et al., 2010, 2009, 2008)

Logistical Challenges

- Repeated exposure to contingencies impractical

Conceptual Challenges

- Relevant antecedents and consequences events difficult to manipulate
- Contingencies responsible for problem behavior may vary across settings (Lang et al., 2010, 2009, 2008)

Logistical Challenges

- Repeated exposure to contingencies impractical
- Risks of evoking challenging behavior in the community

Conceptual Challenges

- Relevant antecedents and consequences events difficult to manipulate
- Contingencies responsible for problem behavior may vary across settings (Lang et al., 2010, 2009, 2008)

Logistical Challenges

- Repeated exposure to contingencies impractical
- Risks of evoking challenging behavior in the community

Ethical Challenges

- Maintain client dignity (BACB, 2014)

Conceptual Challenges

- Relevant antecedents and consequences events difficult to manipulate
- Contingencies responsible for problem behavior may vary across settings (Lang et al., 2010, 2009, 2008)

Logistical Challenges

- Repeated exposure to contingencies impractical
- Risks of evoking challenging behavior in the community

Ethical Challenges

- Maintain client dignity (BACB, 2014)
- Precursor behavior

Recent Advances in Functional Analysis Methodology

Recent Advances in Functional Analysis Methodology

Bloom and Colleagues (2011)

- 2 Minute test and control conditions
- Terminate trial upon first occurrence of problem behavior
- No visual inspection of data in a linear fashion

Recent Advances in Functional Analysis Methodology

Bloom and Colleagues (2011)

- 2 Minute test and control conditions
- Terminate trial upon first occurrence of problem behavior
- No visual inspection of data in a linear fashion

Thomason-Sassi and Colleagues (2011)

- Latency as a response measure
- Terminate trial upon first occurrence of problem behavior
- Visual Inspection of data

Purpose of Study

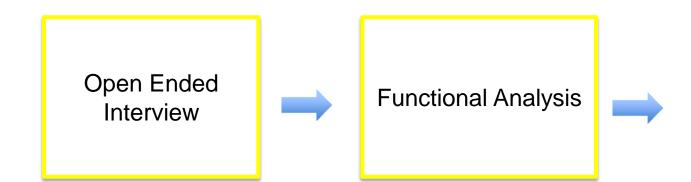
- Extend previous research through application of emerging functional analysis technology into community settings
- Develop comprehensive intervention in these settings

Participants

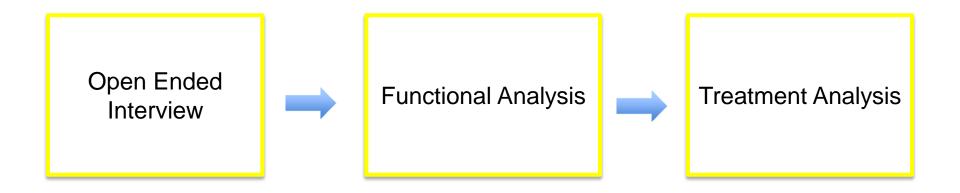
Participant	Age	Diagnosis	Target Behavior	Setting
Lilly	7	PDD-NOS	Screams	Sidewalk Downtown (Dunkin Donuts)

Participants

Participant	Age	Diagnosis	Target Behavior	Setting
Lilly	7	PDD-NOS	Screams	Sidewalk Downtown (Dunkin Donuts)
Dwight	14	Autism Spectrum Disorder	Whines	Staples, Home Depot, Grocery Store


Participants

Participant	Age	Diagnosis	Target Behavior	Setting
Lilly	7	PDD-NOS	Screams	Sidewalk Downtown (Dunkin Donuts)
Dwight	14	Autism Spectrum Disorder	Whines	Staples, Home Depot, Grocery Store
Aaron	9	PDD-NOS	Elopement	Target


Treatment Progression

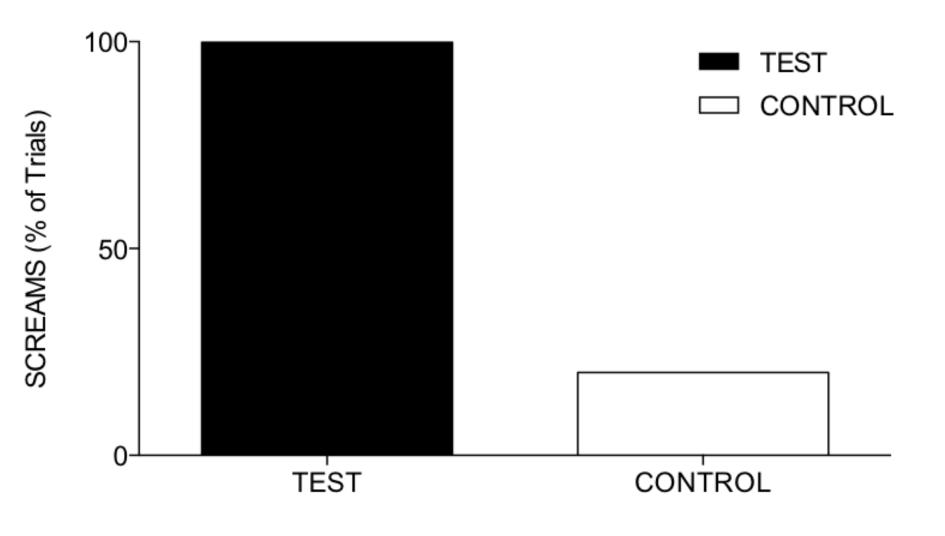
Treatment Progression

Treatment Progression

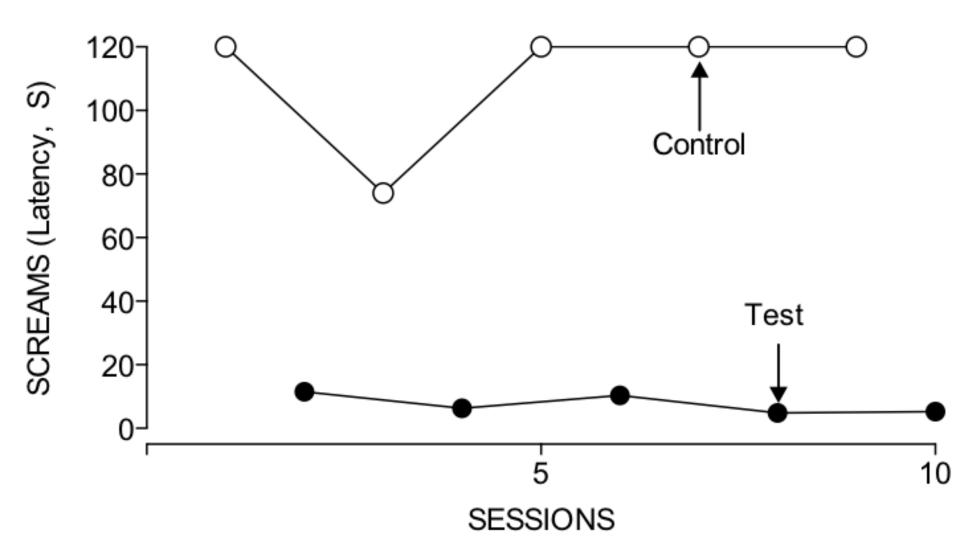
Lilly: Functional Analysis

• Test

- "Walking to Dunkin Donuts is all done, let's go home"
- Access to walking terminated
- Screams terminated trial


Lilly: Functional Analysis

• Test


- "Walking to Dunkin Donuts is all done, let's go home"
- Access to walking terminated
- Screams terminated trial

Control

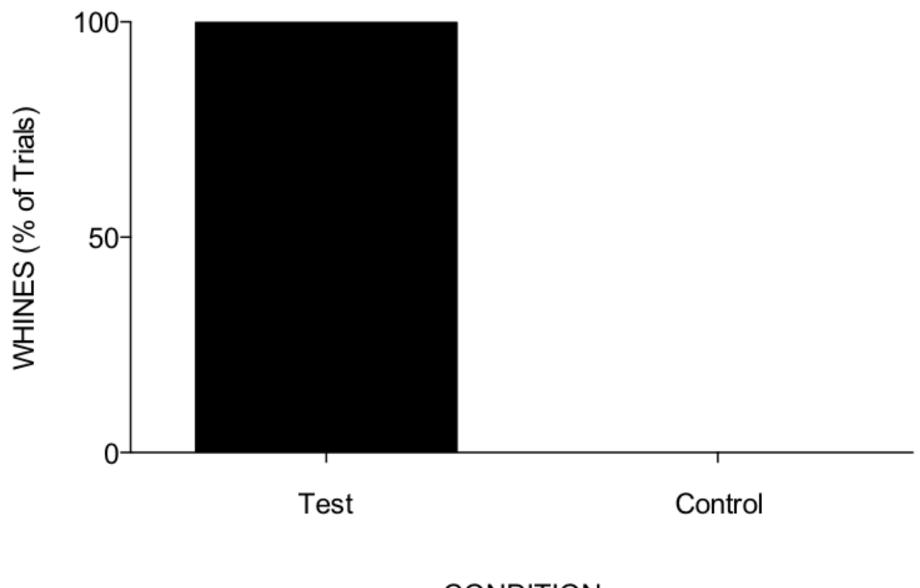
- "Let's go to Dunkin Donuts"
- Continuous access to walking
- Screams terminated trial

CONDITION

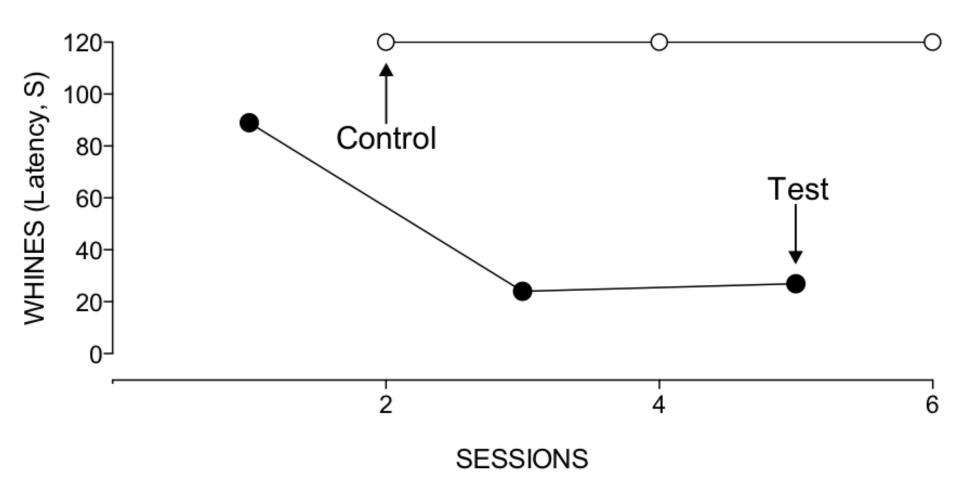
Dwight: Functional Analysis

• Test

- "Let's go shopping at X location"
- Enter store to begin shopping
- Whines terminated trial


Dwight: Functional Analysis

• Test


- "Let's go shopping at X location"
- Enter store to begin shopping
- Whines terminated trial

Control

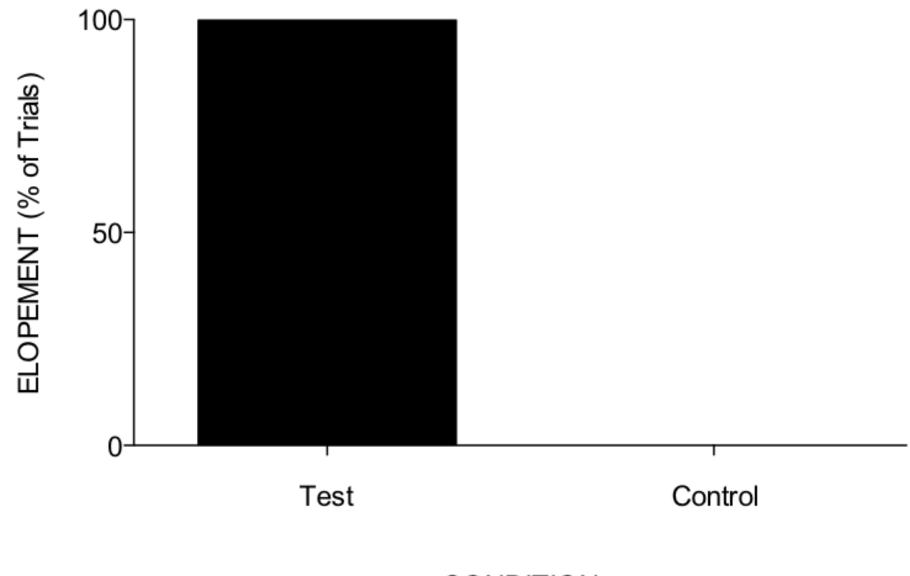
- "X location is all done, let's go to the car."
- Continuous access to car and heading home
- Whines terminated trial

CONDITION

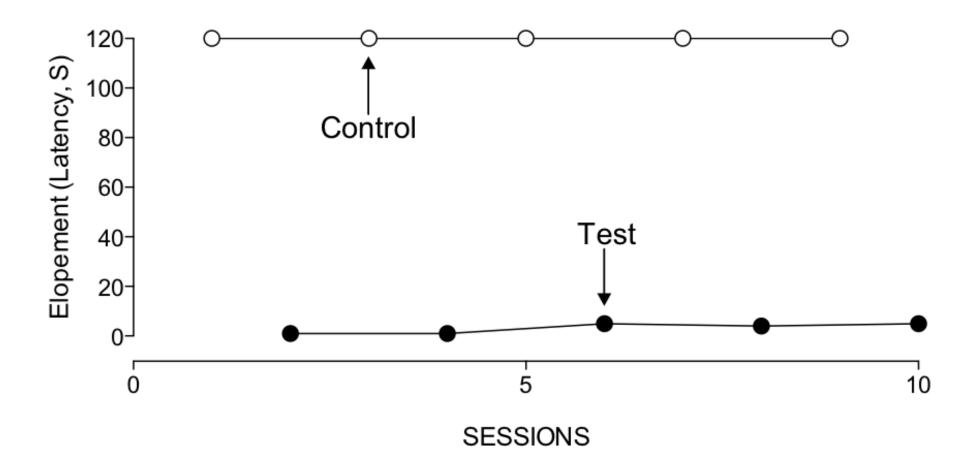
Aaron: Functional Analysis

• Test

- "Walk this way"
- Electronics terminated, demand to walk presented
- Elopement terminated trial


Aaron: Functional Analysis

• Test


- "Walk this way"
- Electronics terminated, demand to walk presented
- Elopement terminated trial

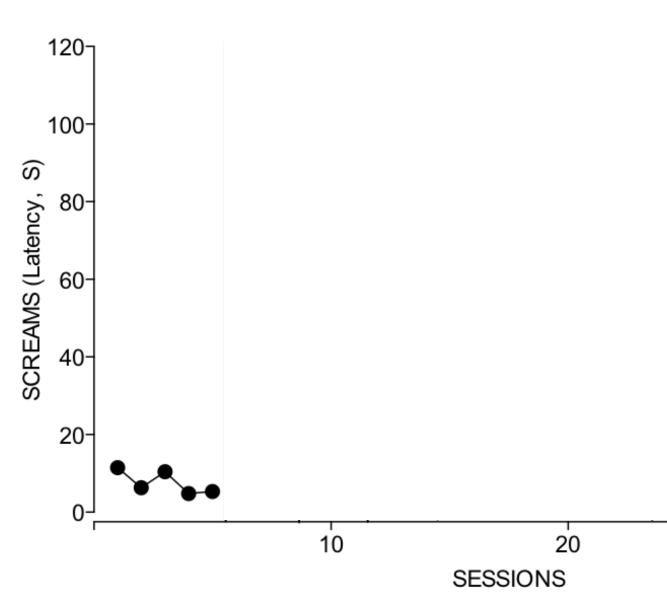
Control

- "You can go where ever you'd like."
- Continuous access to electronics
- Elopement terminated trial

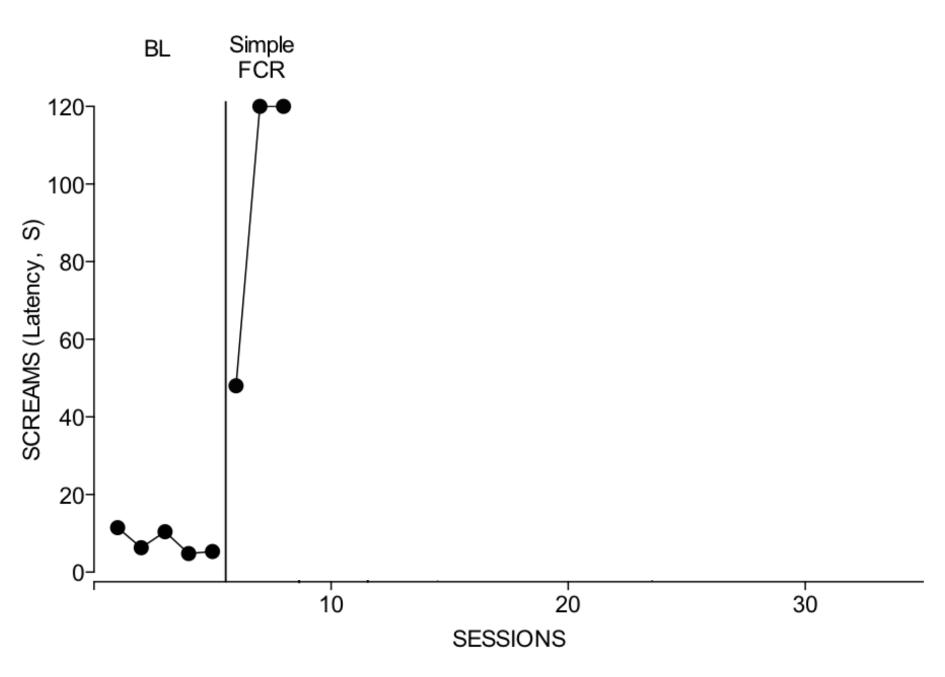
CONDITION

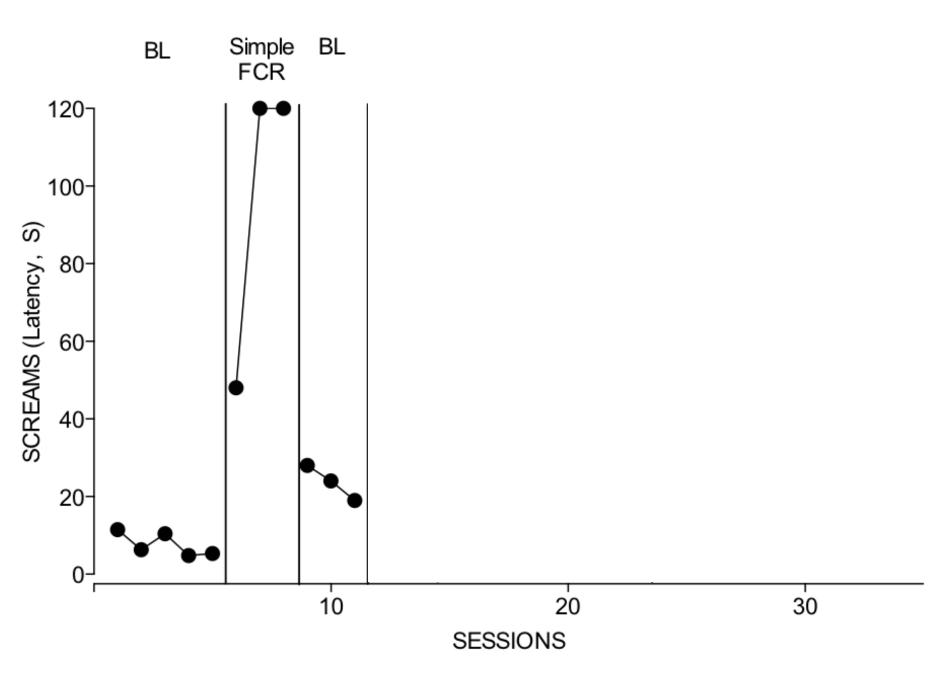
Treatment

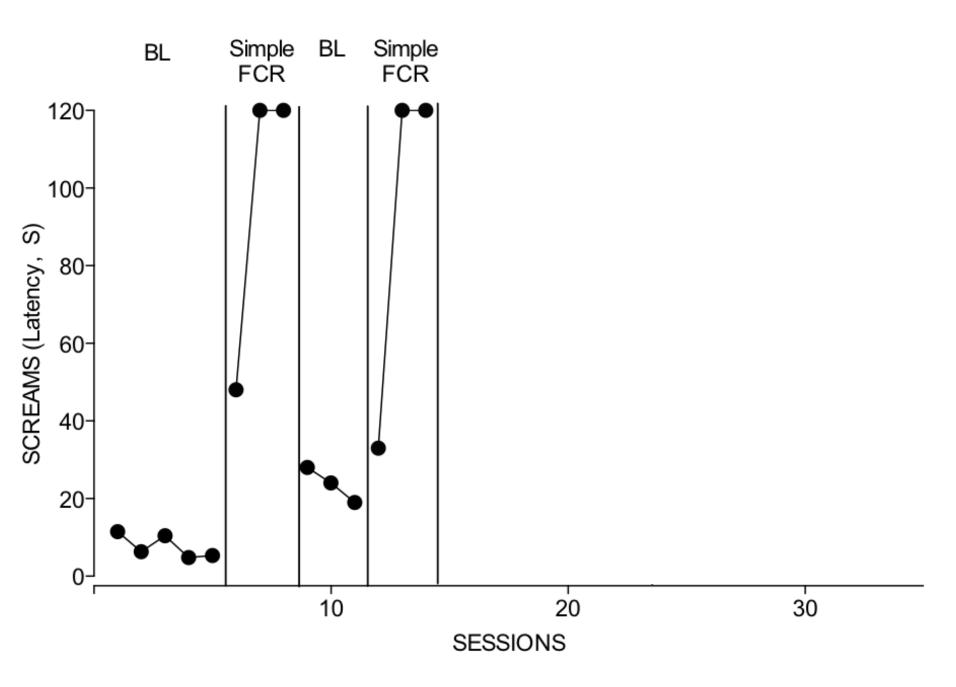
• Differential Reinforcement of Alternative Behavior (DRA)

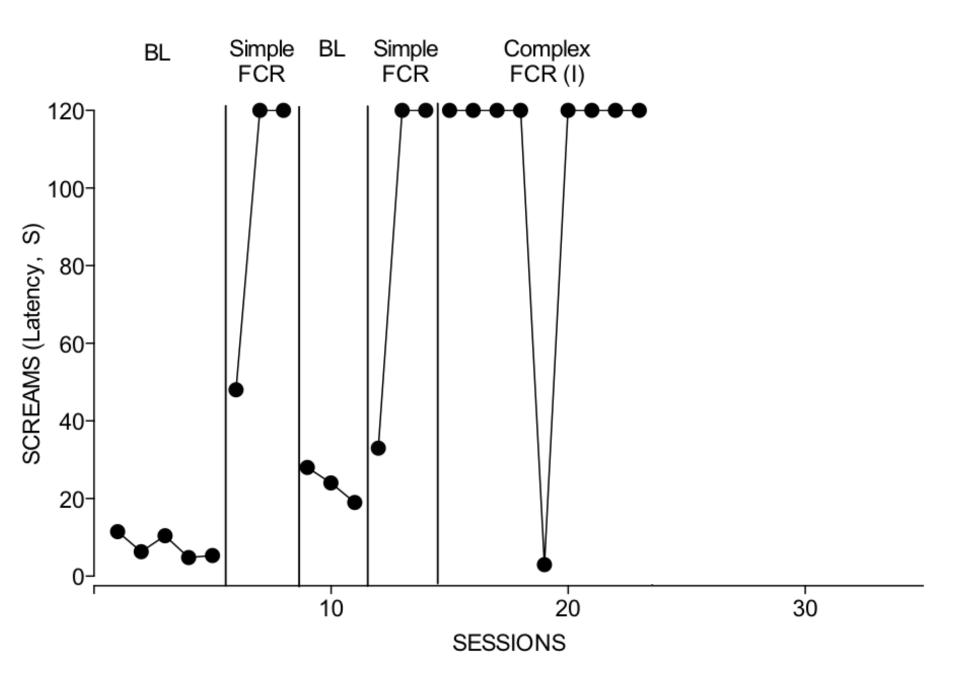

Treatment

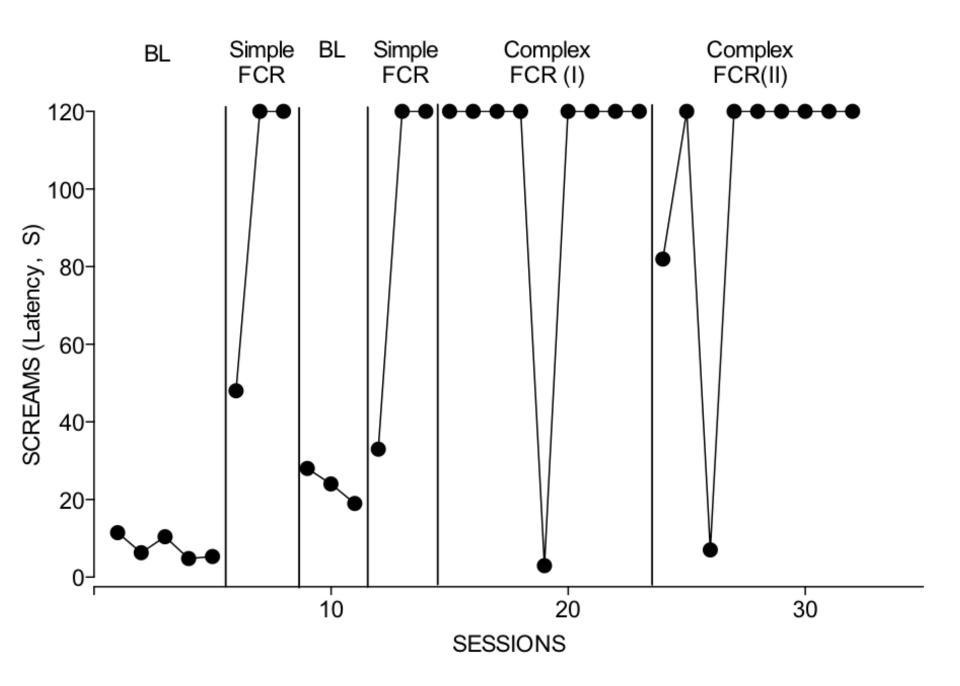
- Differential Reinforcement of Alternative Behavior (DRA)
- Denial Tolerance

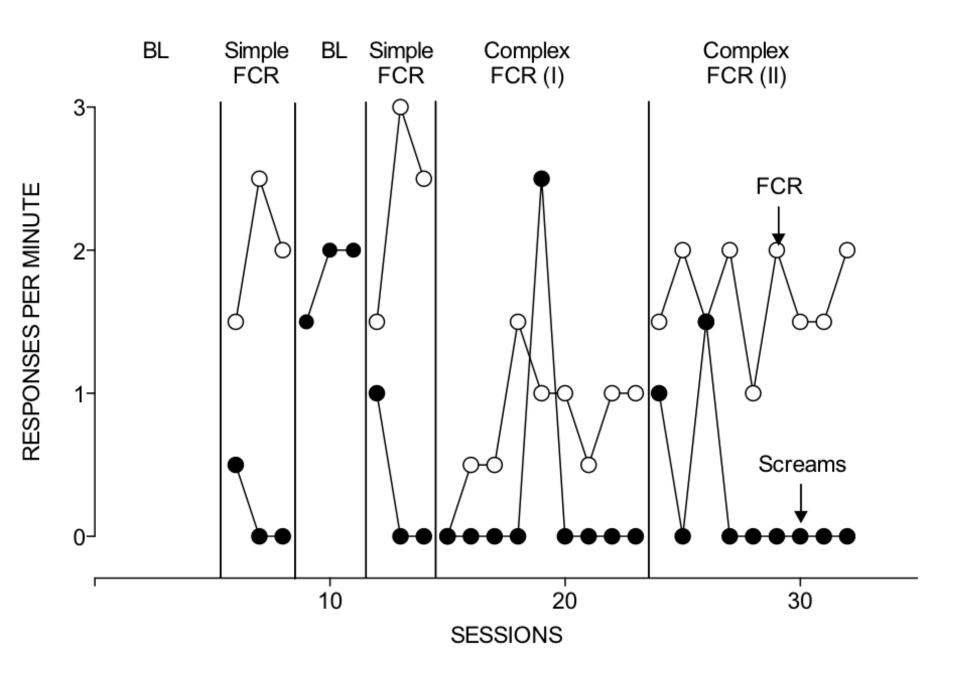

Treatment

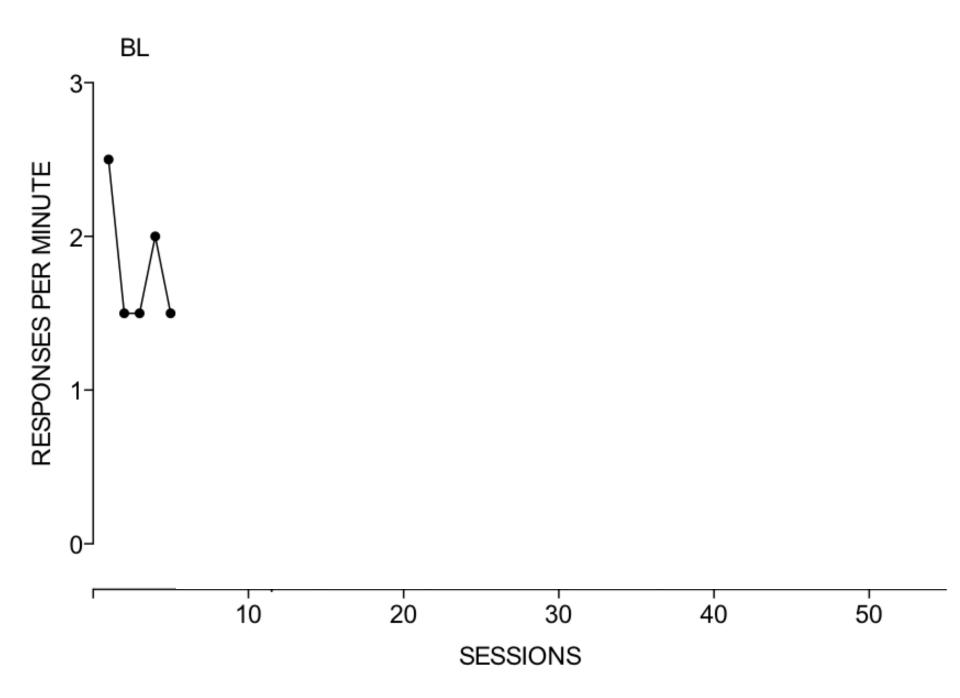

- Differential Reinforcement of Alternative Behavior (DRA)
- Denial Tolerance
- Experimental Design
 - Reversal
 - Changing Criterion

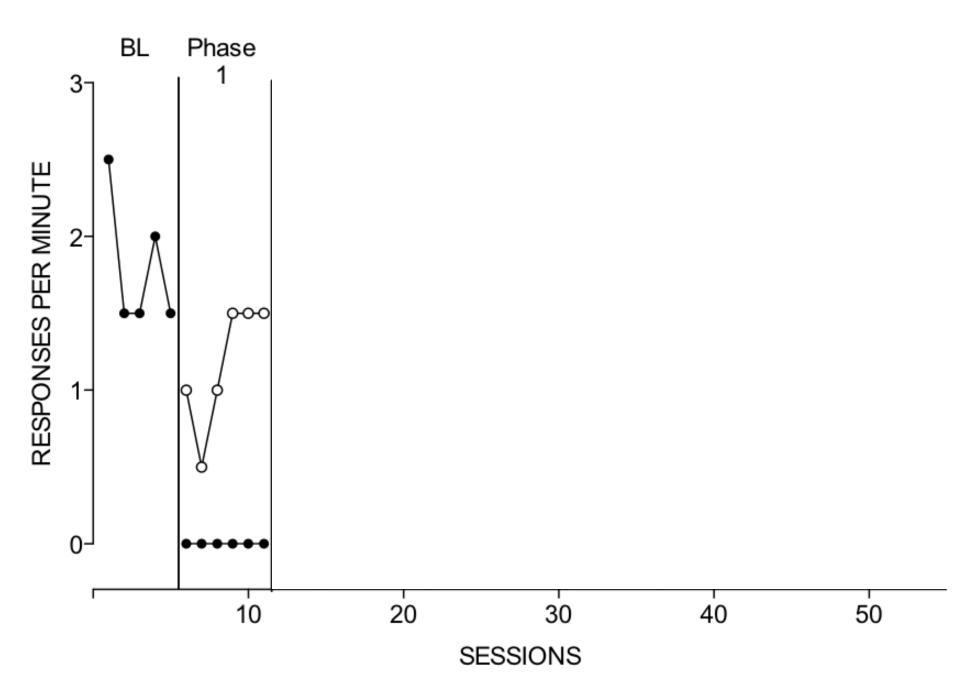

BL

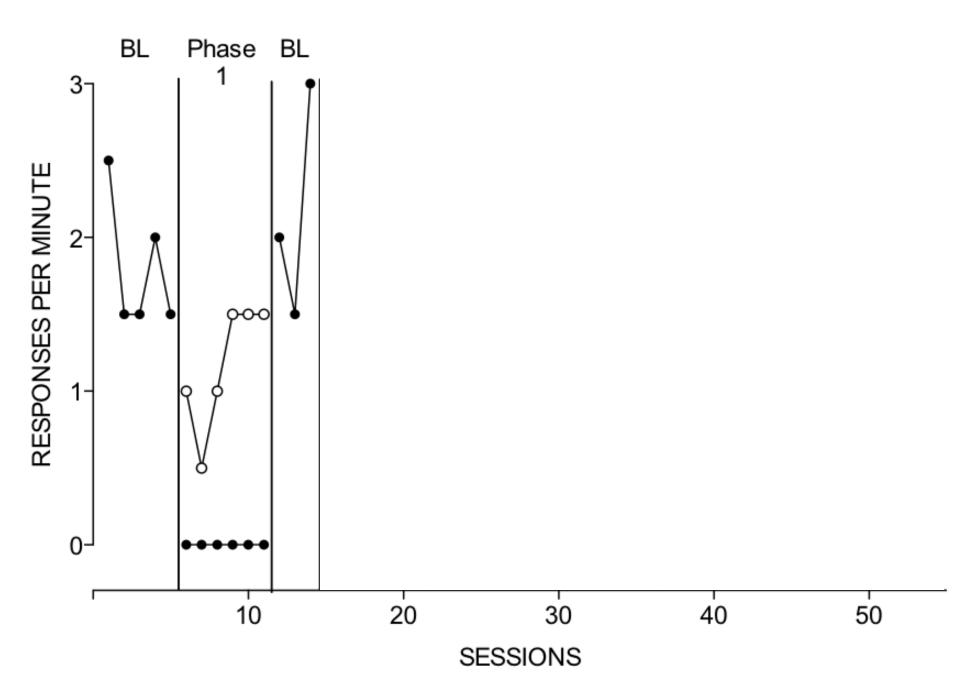


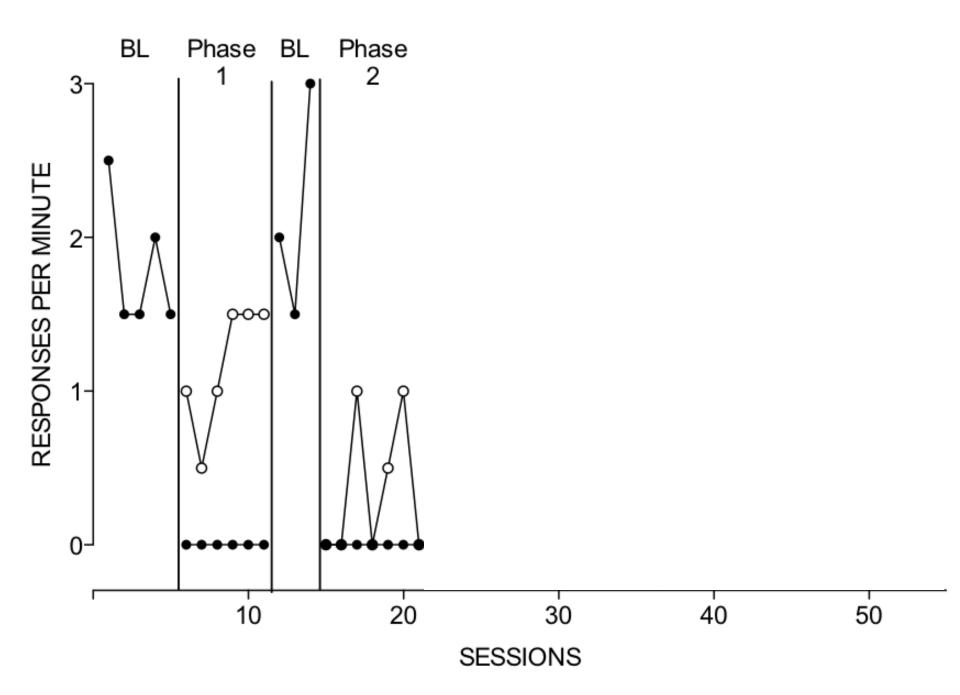

30

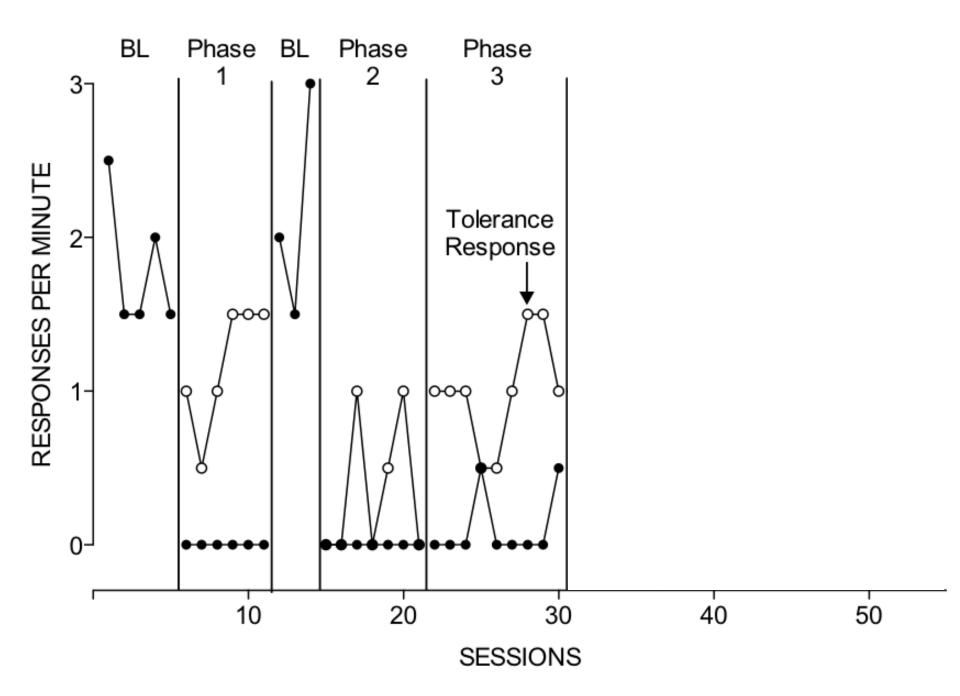


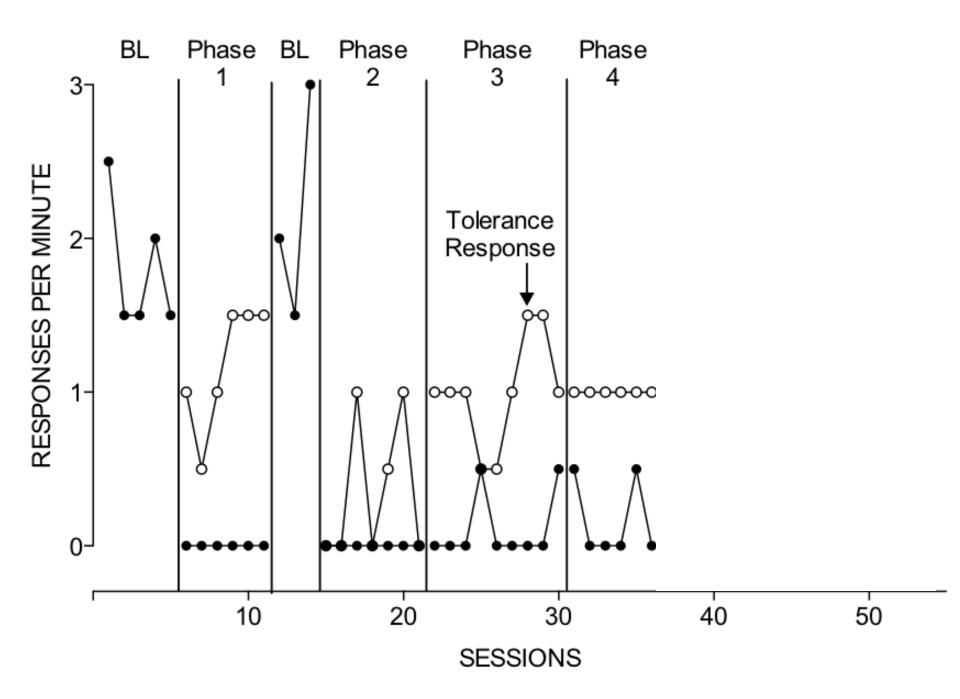


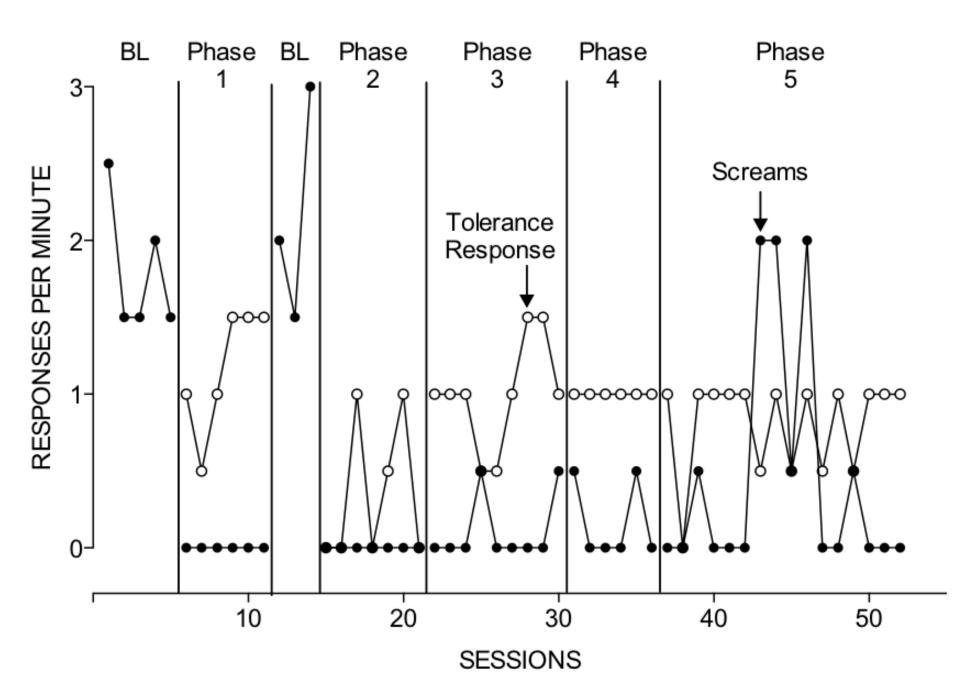












- Trial-Based Functional Analysis
 - Identified reinforcers for problem behavior in 3 of 3 participants

- Trial-Based Functional Analysis
 - Identified reinforcers for problem behavior in 3 of 3 participants
 - Limited exposure to contingencies

- Trial-Based Functional Analysis
 - Identified reinforcers for problem behavior in 3 of 3 participants
 - Limited exposure to contingencies
 - Minimizes risks to client dignity

- Trial-Based Functional Analysis
 - Identified reinforcers for problem behavior in 3 of 3 participants
 - Limited exposure to contingencies
 - Minimizes risks to client dignity

Treatment

Substantial reduction in problem behavior

- Trial-Based Functional Analysis
 - Identified reinforcers for problem behavior in 3 of 3 participants
 - Limited exposure to contingencies
 - Minimizes risks to client dignity

Treatment

- Substantial reduction in problem behavior
- Strengthened mands and tolerance responses

- Functional Analysis in the Community
 - Paucity of analysis demonstrations

Functional Analysis in the Community

- Paucity of analysis demonstrations
- Advances in FA methodology

Functional Analysis in the Community

- Paucity of analysis demonstrations
- Advances in FA methodology
- Increases likelihood of clients having successful experiences in the community

Functional Analysis in the Community

- Paucity of analysis demonstrations
- Advances in FA methodology
- Increases likelihood of clients having successful experiences in the community

• Future Research

Evaluate the correspondence of FA results across settings